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CONCAVE SHELLS OF CONTINUITY MODULES

S. A. Pichugov UDC 517.5

We prove the inequality

!(t)  inf
s>0

✓
!
⇣ s

2

⌘
+

!(s)

s
t

◆
,

where !(t) is a function of the modulus-of-continuity type and !(t) is its smallest concave majorant.
The consequences obtained for Jackson’s inequalities in C2⇡ are presented.

Let !(t) : R+ ! R

+ be a function of the modulus-of-continuity type, i.e., !(t) is a continuous nondecreasing
function, !(0) = 0, and !(t1 + t2)  !(t1) + !(t2). Also let ⌦ be the class of all functions of this kind.
The following lemma is true for the least concave majorant !(t) :

Lemma. For any ! 2 ⌦ and all k 2 N, the inequalities

!(kt)  (k + 1)!(t) (1)

are true. Inequality (1) is exact on the class ⌦, i.e., for any t > 0,

sup

!2⌦

!(kt)

!(t)

= k + 1. (2)

Earlier, this lemma was proved by Stechkin [1] for k = 1 and by Korneichuk [2] for k 2 N . Let

!(f, h) := max

|t|h

max

x

|f(x+ t)− f(x)| = max

|t|h

kf(·+ t)− f(·)k

be the modulus of continuity of a 2⇡-periodic continuous function f in the space C2⇡ and let

kfk = max

x

|f(x)|.

Then !(f, h) 2 ⌦ and, in addition, the property

!(f, h) = !(f,⇡) (3)

is true for all h ≥ ⇡.
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Assume that the class ⌦ contains only functions ! for which the additional property (3) is true. For any ! of
this type from ⌦, there exists a function f 2 C2⇡ such that [3] (Sec. 7.1)

!(f, t) = !(t) (4)

for all t > 0.

We prove a somewhat corrected inequality (1).

Theorem. Suppose that ! 2 ⌦. Then, for all t > 0,

!(t)  inf

s>0

✓
!

⇣
s

2

⌘
+

!(s)

s

t

◆
(5)

and, in particular,

!(kt)  !

✓
t

2

◆
+ k!(t). (6)

For all k 2 N and every t 2
⇣
0,

⇡

k

⌘
, inequality (6) is unimprovable on the class ⌦ in a sense that

sup

!2⌦

!(kt)

!

✓
t

2

◆
+ k!(t)

= 1. (7)

Proof. By the Peetre theorem [4],

1

2

!(f, 2t) = K(f, t;C,C

1
) := inf

g2C1
(kf − gk+ tkg0k) = inf

N>0
{kf − gk+ tN ; kg0k  N}. (8)

According to the Korneichuk theorem [3] (Sec. 8.3), we get

inf{kf − gk; kg0k  N} =

1

2

max

y2[0,⇡]
(!(f, y)−Ny). (9)

If follows from (4), (8), and (9) that

!(t) = inf

N>0

✓
max

y2[0,⇡]
(!(y)−Ny) +Nt

◆
.

For any s 2 (0,⇡), we set

N =

!(s)

s

.

Then

!(t)  inf

s

✓
max

y2[0,⇡]

✓
!(y)− !(s)

s

y

◆
+

!(s)

s

t

◆
. (10)
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Note that

max

y2[0,⇡]

✓
!(y)− !(s)

s

y

◆
= max

y2[0,s]

✓
!(y)− !(s)

s

y

◆
. (11)

Indeed, let y > s, i.e., y = ks+ y

0
, where k 2 N and y

0 2 [0, s]. Then

!(y)− !(s)

s

y = !(ks+ y

0
)− !(s)

s

(ks+ y

0
)

 (k!(s) + !(y

0
))−

✓
k!(s) +

!(s)

s

y

0
◆

= !(y

0
)− !(s)

s

y

0
.

We now show that

max

y2[0,s]

✓
!(y)− !(s)

s

y

◆
 !

⇣
s

2

⌘
. (12)

For y 2
h
0,

s

2

i
, this is obvious. Let y 2

h
s

2

, s

i
. Then

!(y)− !(s)

s

y  !(s)− !(s)

s

s

2

=

1

2

!

⇣
2 · s

2

⌘
 !

⇣
s

2

⌘
.

In view of the arbitrariness of s, inequality (5) follows from (10)–(12).
Since

!

✓
t

2

◆
+ k!(t)  (k + 1)!(t),

relation (7) follows from (2):

sup

!2⌦

!(kt)

!

✓
t

2

◆
+ k!(t)

≥ sup

!2⌦

!(kt)

(k + 1)!(t)

= 1.

The theorem is proved.

Relation (2) appears to be useful in proving the exact Jackson inequalities for the best uniform approximations
of continuous periodic functions by trigonometric polynomials. If

e

n−1(f) := inf

{Ck}

������
f(x)−

X

|k|n−1

C

k

e

ikx

������
,

then, by the Korneichuk theorem [3] (Sec. 7.6), we get

e

n−1(f) 
1

2

!

⇣
f,

⇡

n

⌘
. (13)
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It follows from (2) that, for k 2 N, we can write

e

n−1(f) 
k + 1

2

!

⇣
f,

⇡

nk

⌘
.

For any k 2 N, this inequality is uniformly exact in n, namely [2],

✓
1− 1

2n

◆
1

2

 sup

f2C2⇡

e

n−1(f)

(k + 1)!

⇣
f,

⇡

nk

⌘  1

2

. (14)

If, instead of (2), we apply relation (5) to inequality (13), then we get the following form of the Jackson
inequality:

e

n−1(f) 
1

2

inf

s>0

✓
!

⇣
f,

s

2

⌘
+

!(f, s)

s

⇡

n

◆
. (15)

We now mention some specific values of s for which the constant
1

2

on the right-hand side of (15) is unim-
provable:

✓
1− 1

2n

◆
1

2

 sup

f2C2⇡

e

n−1(f)

!

⇣
f,

⇡

n

⌘
+

1

2

!

✓
f,

2⇡

n

◆  1

2

,

for k 2 N,

✓
1− 1

2n

◆
1

2

 sup

f2C2⇡

e

n−1(f)

!

⇣
f,

⇡

2nk

⌘
+ k!

⇣
f,

⇡

nk

⌘  1

2

.

In particular,

✓
1− 1

2n

◆
1

2

 sup

f2C2⇡

e

n−1(f)

!

⇣
f,

⇡

2n

⌘
+ !

⇣
f,

⇡

n

⌘  1

2

. (16)

Here, the lower bounds directly follow from (14).
Note that relations similar to (16) with the same constant 1/2 are also true in the spaces L

p

[0, 2⇡], p 2 [1, 2].

Let

kfk
p

=

0

@ 1

2⇡

2⇡Z

0

|f(x)|pdx

1

A
1/p

,

e

n−1(f)p := inf

{Ck}

������
f(x)−

X

|k|n−1

C

k

e

ikx

������
p

,

!(f, h)

p

= sup

|t|h

k∆
t

f(x)k
p

, ∆

t

f(x) = f(x+ t)− f(x).
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In [5, 6], Chernykh proved the following Jackson inequalities sharp for all n 2 N :

e

n−1(f)2 
1

2

1/2
!

⇣
f,

⇡

n

⌘

2
,

e

n−1(f)p 
1

2

1− 1
p

!

✓
f,

2⇡

n

◆

p

, p 2 [1, 2).

(17)

These inequalities follow from his more exact inequalities:

e

2
n−1(f)2 

n

4

⇡/nZ

0

sinntk∆
t

fk22dt,

e

p

n−1(f)p 
1

2

p−1

n

4

2⇡/nZ

0

sin

n

2

tk∆
t

fkp
p

dt, p 2 [1, 2).

(18)

Since

n

4

⇡/nZ

0

sinntk∆
t

fk22 dt =
n

4

⇡/2nZ

0

sinntk∆
t

fk22 dt+
n

4

⇡/nZ

⇡/2n

sinntk∆
t

fk22 dt

 1

4

!

2
⇣
f,

⇡

2n

⌘

2
+

1

4

!

2
⇣
f,

⇡

n

⌘

2
,

we have

e

n−1(f)2 
1

2

⇣
!

2
⇣
f,

⇡

2n

⌘

2
+ !

2
⇣
f,

⇡

n

⌘

2

⌘1/2
. (19)

Similarly, for p 2 [1, 2), we get

e

n−1(f)p 
1

2

 
!

p

⇣
f,

⇡

n

⌘

p

+ !

p

✓
f,

2⇡

n

◆

p

!1/p

. (20)

The constant 1/2 in inequalities (19) and (20) is sharp in L

p

[0, 2⇡] for any n, and the extreme functions are
the same as in (17) (see [5, 6]).

For p 2 (2,1), the exact inequalities similar to (17) and (18) are known only for n = 1 . Thus, the inequality

e0(f)p 
1

2

1/p
!(f,⇡)

p

was obtained in [7] and the inequality

e0(f)p 
1

2

1/p

0

@ 1

⇡

⇡Z

0

k∆
t

fkp0
p

dt

1

A
1/p0

, (21)
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where p0 = p(p−1)

−1
, was deduced in [8]. Inequality (21) yields the following analog of the exact inequalities (19)

and (20) for n = 1 and p > 2 :

e0(f)p 
1

2

1/p

0

B@
1

⇡

⇡/2Z

0

!

p

0
(f, t)

p

dt+

1

⇡

⇡Z

⇡/2

!

p

0
(f, t)

p

dt

1

CA

1/p0

 1

2

✓
!

p

0
⇣
f,

⇡

2

⌘

p

+ !

p

0
(f,⇡)

p

◆1/p0
. (22)

A sequence of δ-shaped functions is extreme in (22).
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