ДНЕПРОПЕТРОВСКИЙ ИНСТИТУТ ИНЖЕНЕРОВ ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА имени М. И. КАЛИНИНА

На правах рукописи

СНИТКО Валерий Филиппович

ИССЛЕДОВАНИЕ РАБОТЫ НЕРАЗРЕЗНЫХ ПРОЛЕТНЫХ СТРОЕНИЙ ЖЕЛЕЗОБЕТОННЫХ МОСТОВ, ОБРАЗОВАННЫХ ИЗ СБОРНЫХ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫХ ЭЛЕМЕНТОВ ПРИ РАЗЛИЧНЫХ ТИПАХ СТЫКОВ

Специальность 05,23,15—МОСТЫ И ТОННЕЛИ И ДРУГИЕ СТРОИТЕЛЬ-НЫЕ СООРУЖЕНИЯ НА ЖЕЛЕЗНЫХ И АВТОМОБИЛЬНЫХ ДОРОГАХ

Автореферат диссертации на соискание ученой степени кандидата технических наук

ДНЕПРОПЕТРОВСК 1979

HIBAI

Работа выполнена на кафедре строительных конструкции и мостов Киевского автомобыльно-дорожного института имени 60-летия Великой Октябрьской социалистической революции.

Научный руководитель — заслуженный деятель науки Украинсжой ССР доктор технических наук, профессор Лившиц Я.Д.

Официальные оппоненты - доктор технических наук **Тизирия** Г.В.; кандидат технических наук, доцент Яценко Е.А.

Ведущее предприятие : Госдорнии миндорстроя УССР.

Защита состоится " 3 " Дежей (1979 г.)

на заседания специализированного совета в к 114.07.02 " Мости и тоннели и другие строительные сооружения на велезных и автомобильных дерогах " в Днепропетровском институте инженеров велезнодорожного транспорта имени М.И.Калинина (г.Днепропетровск, 10

С диссертацией можно ознакомиться в библиотеке Днепропетровского института инженеров железнодорожного транспорта. Автореферат разослан » в иссетт 1974г.

Ученый секретарь специализированного совета Радзиховский D.A.

ОНЦАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В течение ряда последних лет широкое распространение получили пролетные строения, образованные из длиномерных, главным образом унифицированных, предварительно напряженных элементов, работакших сначала как балки на двух опорах, а затем и при помощи обжатых или необжатых стыков и превращаемых после удаления временных опор в неразрезные конструкции. Усилия. возникающие в таких системах от постоянной нагрузки, существенно зависят от влияния длительных процессов, протекающих за весь период времени, в течение которого происходит изменение статической схемы. Расчеты таких систем с изменяемой во времени статической схемой, которые производились до сих пор, показали существенное различие между значениями усилий, вычисленными с учетом влияния изменения статической схемы во времени и без такого учета. Эти расчеты производились на основе различных вариантов линейной теории ползучести / теории упруго-ползучего тела, классической теории старения, модифицированной теории старения, теории, основанной на представлении железобетона как квазиоднородного тела и других/. Результаты, получаемые на основе каждого из этих вариантов, в большей или меньшей степени отличались друг от друга. Правомерность результатов до сих пор определялась сравнением их с результатами, полученными на основе теории упруго-ползучего тела. однако последние могли быть получены только для некоторых сравнительно простых случаев, когда могли быть определены все опытные параметры. необходимые для расчета по теории упруго-ползучего тела. Сравнения расчетных данных с экспериментальными данными для систем с изменяемой во времени статической схемой практически до сих пор не произ-

НАУКОВО-ТЕХНІЧНА БІБЛІОТЕКА

Дніпропетровського національного університету залізничного транспорту Імені академіка В. Лазаряна

волились.

До настоящего времени нет достаточно четких заключений о пренmymectbax offerthx cthrob iic cpabhehend co cthramh heofeathme. Viment-СЯ ВСКОТОРЫЕ ЭКСПЕРЕМЕНТАЛЬНЫЕ ДАННЫЕ ПО ЭТОМУ ВОПРОСУ. НО ИХ ВЕЛЬЗЯ счетать исчерпываниями. Допустимость необщатых стиков определяется вириной раскрытия трешин в них. Последняя по всем имеющимся методам ее расчете, пропорциональная напряжениям в арматуре в сечении с трешиной. Методику определения этих напряжений нельзя считать окончательно установившейся. Перепац напряжений в момент образования тремяны, влияные на напряжения повторных загружений с учетом дальмейшего протекания усадки и ползучести исследованы недостаточно. В свете издоженного вытекает актуальность темы исследования, посвященного решениям и уточнениям всех указанных выше вопросов. Особенно актуельным является экспериментальное подтверждение методики расчета пераврезных прометных строений с изменлемой во времеии статической схемой и апробация на основе результатов экспериментального исследования принятия в основу расчета того или иного варианта теории линейной ползучести. С учетом как точности результатов, так и трудоемкости расчета и накопленности экспериментальных параметров, необходимых для его реализации.

Цель диссертационной работы. Провести экспериментальное исоледование перераспределения усилий во времени в системах с измемяемой во времени статической схемой типа железобетонных неразрезвых пролетных строений, образуемых из сборных предварительно напряженных элементов, об"единяемых различными /обжатыми и необжатыми/ отиками. Сравнить полученные экспериментальные данные с расчетными. ползу вичисленными на основе различных вариантов линейной теории ползучеста; оценать точность различных режений и дать рекомендации по применению того или иного варианта.

Разработать метопику расчета трешиностойкости необжатых стыков при воздействии постоянной нагрузки, не вызыважией трещин, и усадки бетона с учетом влияния ползучести.

Разработать метолику определения напряжений в бетоне и арматуре, вызываемых всеми видами магрузок и усадкой бетока с учетом влияния ползучести перед появлением трещин, в момент появления трещини /перепад напряжений/, в любой момент времени после появления трещим, при удаления и повторном приложении временной нагрузки.

Научная новизна. Впервые получены экспериментальные данные по перераспределению во времени усили в статически неопределимых пролетных строениях о изменяемой во времени статической схемой. визванных постоленой нагрузкой, и на основе этих данных и анализа трудоемкости расчетных операций / с учетом применения ЭЕМ/ доказана правомерность применения варнанта модифицированной теории старения с переменным во времени коэффициентом обратимости деформаций ползучеств /упрощенного варианта теория упруго-ползучего тела/.

Решена задача определения момента времени образования трещини в необжатом стике от воздействия собственного веса и усадки бетона. Разработана методика определения перепада напряжений в арматуре и бетоне в момент приложения временной нагрузки, визивающей трещину, с учетом истории воздействия постоянной нагрузки, ползучести и усадки бетона. Разработана метолика учета изменений напряжений в арматуре и бетоне при удалениях и повторных приложениях временной нагрузки в любой момент времени, вплоть до момента зату-HIPAN хания ползучести.

Практическое значание. Проведенные в работе экспериментальные мсследования, сравнение результатов экспериментальных исследований с расчетными данными, полученными ва основе существующих различных методик, позволили предложить для практических расчетов достаточно надежную и, в то же время, не слинком трудоемкую расчетную методику определения усилий в неразрезных пролетных строениях с изменяемой во времени статической схемой, основанную на последнем варианте модифицированной теории старения и на нормированных расчетных параметрах. Разработанная метопика анализа напряжений в сечениях с трещиной позволяет с большей надежностью выбирать тип стыков с нанболее простой технологией их изготовления и дать рекомендации по их ращиональному расположению.

На защиту виносятся следующие положения:

- I. Новые экспериментальные данные по перераспределению усилий во времени в неразрезных железобетонных пролетных строениях с изменяемой во времени статической схемой.
- 2. Апробация на основе сравнения полученных новых экспериментальных данных с расчетными, практической методики расчета неразрезных пролетных строений, образуемых из разрезных предварительно напряженных элементов с изменяемой во времени статической OXEMOE.
- 3. Методика анализа напряженного состояния в необжатом стыке с учетом влияния усадки и ползучести бетона, перепада напряжений в момент образования трешины. Удаления и повторяемости временной нагрузки.
- 4. Рекомендации по применению обжатых и необжатых стыков статив неразрезных пролетных строениях с изменяемой во времени стати-

ческой схемой и рациональному расположению стыков.

Внедрение результатов исследования. Разработанная методика анализа напряженного состояния в стиках работающих с трецинами, использована Киевским филиалом ППИ "Союздорпроект" Миндорстроя СССР при проектировании ряда неразрезных железобетонных мостов в частности мостов через р.Уж ж р.Гуйва.

Публикации и доклады. По теме диссертации одна статья опубликована две депонированны и две работы помещены в зарегистрированных в информационном центре отчетах по гособряжетной тематике кафедры строительных конструкций и мостов КАДИ две статьи находятся в печати. Результаты работы были доложены и одобрены на XXXI XXXIY ,XXXУ научных конференциях профессорско-преподавательского состава Киевского автомобильно-дорожного института в 1976. 1977 и 1978 гг.; на заседании кафедры строительных конструкций и мостов Киевского автомобильно-дорожного института; на заседании кафедры мостов Днепропетровского института инженеров железнодорожного транспорта.

Объем работы. Лиссертация состоит из введения четырех разделов / глав / заключения и рекомендаций списка литературы и приложения.

Работа изложена на I20 страницах из них - 81 страница основного текста, 9 таблиц / 5 страниц /, 36 рисунков /25 страниц/. 60 наименований литературы / 8 страниц / І страница - придожение.

Первый раздел - введение в котором обосновывается актуаль. ность темы и формулируются положения выносимые на защиту.

Второй раздел является обзорным. В нем рассматриваются со орн методы образования неразрезных пролетных строений мостов из соорных

разрезных элементов , типы стыков, применяемых для их об"единения. Далее сделан обзор исследований работы неразрезных продетных строений с учетом влияния изменения статической скему во времени и ползучести бетона. На основе анализа состояния вопроса поставлены запачи данного всоледования.

Третий раздел посвящен экспериментальному исследованию работи неразрезных балок с разными типами стыков с изменением во времени статической скеми. Приводятся ход и результаты эксперимента.

В четвертом разделе исследуется напряженное состояние различного типа стыков. Разработана методика учета влияния усалки и ползучести бетона на изменение напряженного состояния во времени в сеченив с трещиной. Сделан анализ рациональности расположения HEOGRATHE CTHROB.

В пятом - приводится методика расчета экспериментальной модели и сравнение экспериментальных и расчетных данных, полученных на основе различных вариантов линейной теории ползучести. Приводится оценка точности различных тесрий.

Шестой раздел - заключение и рекомендации.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

В течение последних, примерно десяти лет в железобетонном мостостроении получили широкое распространение неразрезные пролетные строения, образуемые из сборных преднапряженных элементов путем об"единения последних на опорах или в пролетах. Об"единение разрезных элементов осуществляется при помощи как напряженных, так и ненапряженных стыков и происходит последоветельно евных или одновременно во времени. В создании и внедрении неразрезных

пролетных строений, образуемых из унифицированных цлиномерных алементов большую роль сыграли исследования, конструктивные и техвологические разработки Госпорнии миндорстроя УССР /С.Г. Джигит. Е.И. Штильман, Е.И. Эдельман, Ю.Л. Иносов, И.В. Наумченко, Э.А. Годик и ШНИИСА / г. Москва: А.Л. Центлин. А.В. Крылов. M ID./ В.В. Новак/. Внедрение таких конструкций стало возможным благодаря разработки методов расчета статически неопределимых конструкций с изменяемой во времени статической схемой с учетом влияния усалки и ползучести бетона /работы Я.Д.Лившина. В.Д.Харлаба. В.В. Созинова, А.Л. Цейтлина, В.В. Новака, И.Н. Прупченко, М.М. Онишенко, А.Я.Халпахчи, зарубежного исследователя Чиорино и др./.

Практическое применение нашии методы, основанные на инженерных варшантах линейной теории ползучеств. Оценка точности решений на основе этих вариантов производилась путем сравнения с ренениями на основе уточненного варианта теории упруго-ползучего тела. Экспериментальной проверки ни приближенных, ни уточненных решений не производились.

Применение более простых по своей технологичности необщетых стыков разрезных элементов стало возможным благодаря разработке методов анализа напряженного состояния в элементах с локальными трешинами /работи Я.П.Лившица. М.М.Онищенко. Н.Н.Хвощинской, зарубежных исследователей - М.Ивковича, Ж.Перешича и др./. Однако этот анализ не доведен до надлежащего уровня, и в непостаточной мере учитывается влияние усалки бетона, а также влияние удаляемости и повторяемости временной нагрузки. На основании проделанного в работе обзора состояния вопроса поставлени HIPACI DHYACI следующие задачи данного исследования:

- Экспериментальное исследование сборных железобетонных балок, работающих вначале как статически определимые, а затем, посде об"одинения напрягаемыми или ненапрягаемыми стыками и удаления временных опор /как это имеет место при ментаже такого типа продетных строений/, начинающих работать как статически неопределимые, При этом должно быть замерено перераспределение во времени лишних HEMBBECTHUX.
- 2. Сравнение экспериментальных данных по перераспределению неизвестных с расчетными, полученными на основе различных вариантов миженерной теории линейной ползучести.
- 3. Экспериментальная оценка жесткости конструкций как с напрягаемыми, так и с ненапрягаемыми стыками.
- 4. Исследования напряженного состояния необжатого стыка при действии постоянной нагрузки, с учетом влияния усадки и ползучести бетона.
- 5. Исследование напряженного состояния необжатого стыка при действии временной нагрузки, как образующей тредину, так и прилагаемой после или в момент образования трещины от воздействия постоянной загрузки, усадки и ползучести бетона.
- 6. Разработка требований и рекомендаций по применению необжатых стыков в мостовых неразрезных пролетных строениях, образуемых из сборных предварительно напряженных элементов.

Для выполнения первой запачи данного исследования было изготовлено шестнадцать предварительно напряженных железобетонных балок прямоугольного сечения размерами 80 х 160 мм. Из них подовина длиной 2250 мм и половина длиной 1750 мм. Балки армировались 4 <u>I</u> периодического профиля из стали класса А Ш двумя стержнями

марки 25Г2С упрочненной витяжкой с контролем напражений /контролируемое напряжение - 5500 Krc/cm² / диаметрами 12 мм и 10 мм .Вибор типа арматуры дектовался тем, что этот тип арматуры применяется в большинстве продетных строений, сооружаемых органивациями Миндорстроя УССР. Коэффициент армирования верхней и нижней арматуры: M = 0,00806 и M' = 0,0057, что также соответствует коэффициевтам армирования пролетных строений из пустотных унифицированных плит Миндорстроя УССР. Кубиковая прочность на 28 день – $545 \, {}^{\rm KFC}/{\rm cm}^2$. Исходинии материалами для приготовления бетона послужили: пертланццемент Ново-Здолбуновского завода с активностью 500 и удельным весом З.І^Т/см³, песок речной Днепровского карьера с модулем крупности 1.05 и удельным весом $2.64^{\text{г}}$ / см 3 , мебень гранитный крупностью 5-10 мм с удельным весом 2.57^{Γ} /см³. Расход материалов на 1.0 м³ бетова составлял: цемента - 478 кг, песва 459 кг, щебвя - 1261кг, воды 182 л. Для испытания модели /таких моделей было 7/, представлякщей собой от момента времени $C_l = 81$ сутки до момента $C_c = 147$ суток две отдельные разрезные балки, была выполнена экспериментальная установка /рис. I /. Балка А своим левым концом опирается на постоянную опору, а ее правая постоянная опора представляет собой динамометр. Предусмотрена подклинка динамометра для уничтожения начального смещения промежуточной опоры . Балка Б опирается на удаляемую в момент времени $\mathcal{C}_3 = 175$ суток левую опору и постоянную правую опору. В момент времени $\mathcal{L}_3 = 175$ суток произошно об"единение обеих балок и удаление временной опоры /поз.4 /. т.е. превращение экспериментальной модели в 2-х пролетную неразрезную балку. HIGH

Рис. . Н. Испытательный стенд

HTB ACT

Металлическая балка коробчатого сечения, образованная из 2-х швеллеров № 20 /поз. I/, служила основой для опор балок. К ней прикреплены направляющие пружинных установок из швеллеров № 12 /поз. 2/.
Усилие сжатой пружины передается через металлическую прокладку на
траверсу из днутавра № 10 /поз. 3/, последняя передает усилие на балку /поз. 6 /. Одной из промежуточных опор служил динамометр, установленный на подвижных клиньях /поз. 4/, другой — временная опора, основой которой являлось винтовое устройство /поз. 5/, позволяющее убирать опору по ходу эксперимента. Перед загружением все пружины и
динамометры были протарированы.

На 56 сутки с момента бетонировки были произведен отпуск арматуры и балки выставлены на временные опоры. С этого момента времени балки работали как разрезные. Через 25 суток с момента отпуска арматуры было произведено загружение балок длительно-действующими сосредоточенными силами 622 кг. Пригрузка балок была выполнена для того, чтоб привести в соответствие действующую на образцы длительную нагрузку с постоянной нагрузкой реальных пролетных строений. Кроме сил собственного веса и дополнительных сосредоточенных сил на образци, работание по схемем статически определимых балок, действовали еще сили предварительного обжатия. В таком состоянии образцы видерживались 66 суток. В возрасте 147 суток было произведено об"единение балок. Перед бетонированием стыков выпуски арматуры из образцов были сварены с помощью пармых смещенных накладок. Арматура напряженных стыков /балки БН-І, БН-2, БН-3 / натягивалась механическим способом. Закрепленные на боковых поверхностях балок угодки служили упорами для 4-х тяг, с помощью которых производилась раздвижка белок, и таким образом, натягивалась арматура стыка. Усылие

натижения арматуры контролировалось наклеенными тензодатчиками сопротивления с базой 10 мм и индикаторами 0.001 мм. установленными на арматуре стыка на базе 200 мм.

COCTAB GETCHA CTHRA GME IDHERT TARGE ME, RAR M AMS GAJOR. ARTEBность пемента развилась 550. Через 28 суток с момента бетонирования стыков, при прочности бетона в стыках 650 кг/см2. белки были раскоужалени /убрана временная опора/ и стики включени в работу. С этого момента балки начали работать как неразрезные двухиролетные. Непосредственно перед этим три балки с ненапрягаемыми стыками /Б-І. Б-І. Б-Ш/ были пригружены нагрузкой расположенной в середине правого продета, подобранной таким образом, чтобы образовалась трещина в пределах ненапрягаемого стика с раскритием менее 0,2 мм. После образования трещин нагрузка, имитировавшая временную, была убрана. Эколеримент был прекращен на 291 сутки существования неразрезной системы при возрасте бетона сборных блоков 466 суток и возрасте бетона стыков 319 сутки. Общая продолжительность испытаний, считая с момента отпуска арматуры сфорных блоков, составила 410 суток. Во время кратковременных испытаний измерались: величина опорной реакции, прогибы балок, деформации скатого и растинутого бетона и арматуры. Прогибы измерялись индиакторами часового типа с ценой деления 0.01 мм. Деформеция балок измерялись индикаторами того же типа с ценой деления 0,00I MM.

В период длительных испытаний измерялись величина опорной реакции, прогибы балок, деформации сжатого и растянутого бетона и арматуры. В момент образования двухпролетных неразрезных систем измерялись прогибы возле опор-динамометров с помощью индикаторов 0,01мм. Работа тензодотчиков сопротивления контролировалась показаниями конт-

рольных датчиков, наклеенных на материалы, аналогичные датчикам. работающим на балках. Одновременно с исследованием деформативности балок при длительном нагружении исследовалась ползучесть бетона в центрально сжатых призмах для определения величины характеристики ползучести при одноосном сжатии.

Экспериментальное исследование перераспределения усилий в неразрезных балках, образованных путем об"единения разрезных балок разными типами стыков, показало, что среднее значение реакции на промежуточной опоре-линамометре в момент об"единения и удаления временной опоры увеличилось с 655 кгс до 1445 кгс. Выдерживание под нагрузкой до момента затухания ползучести приводит к увеличению реакции до 1545 кгс. Приращение реакции с момента образования неразрезной системы составляет 100 кгс. Разница между экспериментальными данными, полученными для балок с обжатыми стыками и для балок с необватные стыками, несущественна и находится в пределах точности измерений. Подученные одытные кривые изменения прогибов и опорной реакции в опитных балках показывают, что происходит практически одинаковое перераспределение усилий во времени как в конструкциях с обжатыми стыками, так и в конструкциях с необжатыми стыками. Образование трещины в стыке почти не отражается на прогибах в пролетах балки.

При исследовании напряженного состояния необжатого стыка проанализировано влияние усадки бетона на трещиностойкость. Решена задача определения того момента времени C_1 , когда трещина возникает от воздействия сравнительно малой /собственный вес/, далекой от трещинообразующей нагрузки, ползучести и усадки бетона. Считаем, что образование трещины происходит тогда, когда напражение

в бетоне на уровне центра растянутой арматуры достигает величины I,5· & Такой подход примерно соответствует подходу норм расчета транонортных сооружений /СН 365-67/ для плитных мостов, армированинх стериневой арматурой. Данный критерий при принятии треугольнотреугольной эпоры в момент трещинообразованыя приводыт к трещынообразувщему моменту, соответствувшему получаемому прв прямоуголькотрешиноугольной эпире. Излагаемая ниже методика сохраняется и при принятим инбого другого критерия.

К моменту образования трещины неизвестимым являются: напряжение в бетоне на уровие пентра верхней арматури 667, напряжения в верхней и нижней арматуре $\partial a \mathcal{E}_i$, $\partial a \mathcal{E}_i$ и сам момент времени \mathcal{E}_i . Решение такой задачи сводится к 4-м уравнениям:

уравнение проекций на продольную ось элемента:

уравнение моментов относительно центра растянутой арматуры:

Уравнения совместности деформации арматуры и бетона записываем на основе общего уравнения линейной ползучести:

ALS HERHER APMATYPH:
$$\mathcal{E}_{t}$$
, $\frac{\partial \mathcal{E}_{t}}{\partial z} = \frac{\partial^{H}}{\partial z} \left(\frac{1}{E_{0}} + C_{\mathcal{E}_{t}} \right) + \int \frac{\partial \mathcal{E}_{t}}{\partial z} \left[\frac{1}{E_{t}} + C_{\mathcal{E}_{t}} - \frac{2g(4\tau_{0})}{2g} \right]^{\frac{1}{2}} \mathcal{E}_{t}^{2} \mathcal{E}_{t}^{2$

для верхней арматури:
$$\frac{\partial at}{\partial x} = \frac{\partial b}{\partial x} \left(\frac{1}{E} + C_{x}\right) + \frac{\partial at}{\partial x} \left(\frac{1}{E_{x}} + C_{x}\right) + \frac{\partial b}{\partial x} \left(\frac{1}{E_{x}} + C_{x$$

Ст - мера ползучести на момент образования трещина; Еуд - относительная деформация усадки на тот же момент BDemenn:

- постоянный изгибалиций момент.

Подинтегральние ядра в уравнениях совместности деформаций запесываем на основе уточненного варшанта модифицированной теорик ползучести /упрощенный вариант теории упруго-ползучего тела, раз-. /миженный Я.Д.Лившении и А.Я.Ханпатии/.

Учитывая, что перераспределение напряжений во времени проискодит монотонно и однозначно и вызывается только наличием арматуры. вполне правомерно производить алгеораизацию интегральных уравнений на основе принятия некоторой функциональной зависимости между д. Как известно, наиболее точно и без усложнения математических выкладок эта возможность апроксимируется параболической кривой второго порядка.

В указанную систему уравнений /1.2.3 к 4 / не входит в явном виде момент времени $\,$ во входят неизвестные параметры ползучести и усадки бетона \mathcal{Y}_{2_i} и $\mathcal{E}_{\mathcal{Y}_{2_i}}$. Эти параметры выражаются через 🗸 по формулам Щербакова-Кичигиной, которые в настоящее время входят в проект нового СНИПа по мостам:

$$\mathcal{G}_{T_1} = \frac{\mathcal{G}_t}{2} \sqrt{\frac{\tau_1}{a}} \qquad \qquad |5|$$

$$\mathcal{G}_{T_1} = \frac{\mathcal{G}_t \cdot \tau_1}{a + \tau_1} \qquad \qquad |6|$$

$$\mathcal{E}_{\mathcal{G}_{T_1}} = \frac{\mathcal{E}_{\mathcal{G}_t}}{2} \sqrt{\frac{\tau_1}{a}} \qquad \qquad |7|$$

$$\mathcal{E}_{\mathcal{G}_{T_1}} = \frac{\mathcal{E}_{\mathcal{G}_t} \cdot \tau_1}{a + \tau_1} \qquad \qquad |8|$$
15

 y_{μ} и y_{μ} – соответственно предельные значения характеристики ползучести и относительной деформации усадки. α – показатель скорости развития во времени деформации бетона. Формулами / 5 / и /7 / следует пользоваться при $x_{\mu} = x_{\mu}$, а формулами / 6 / и / 8 / – при $x_{\mu} = x_{\mu}$.

Как только образуется трещина, происходит перепад напряжений в арматуре и бетоне. Сразу после образования грещины, в момент \mathcal{Z}_{τ} , неизвестными являются напряжение в бетоне на уровне верхней арматуры $\mathcal{C}_{\mathcal{S}_{z}}$, напряжения в верхней и нижней арматуре $\mathcal{C}_{\mathcal{S}_{z}}$, $\mathcal{C}_{\mathcal{S}_{z}}$, и высота работающей зоны бетона $\mathcal{L}_{\mathcal{T}_{\tau}}$ / или глубина раскрытия трещины /.

В нашем распоряжении два уравнения равновесия, уравнение совместности деформаций верхней арматуры и бетона и уравнение, вытекающее из принятия гипотезы плоских сечений:

вытекающее из принятия гипотезы плоских сечении:
$$\int_{h_0-X_{\Sigma_i}}^{h_0} \int_{h_0-X_{\Sigma_i}}^{x_T} dF + \partial_{aZ_i} \cdot F_a - \partial_{aZ_i}^{x_T} \cdot F_a' = 0.$$

$$\int_{h_0-X_{\Sigma_i}}^{x_T} \int_{h_0-X_{\Sigma_i}}^{x_T} \int_{h$$

 $6a\bar{z}_{1} = n \left\{ \left[(1-4a) \frac{l^{2}}{2-p} (4-3p) + k_{0} \frac{p(3-2p)}{2-p} \right] \frac{g_{z}}{3} \cdot \delta_{0} + \frac{1}{2-p} \left[\frac{g_{z}}{3} - \frac{g_{z}}{2-p} \right] - \frac{(1-4a)p(4-3p)}{2-p} \frac{g_{z}}{3} \cdot \delta_{0} + \left[\frac{g_{z}}{2-p} \right] + \left[\frac{g_{$

$$G_{at} = \frac{n}{x_{t}-a'} \left\{ R_{p} \left(h_{o}-a' \right) + \left(h_{o}-x_{t} \right) \left(\left(t-x_{t} \right) \frac{2^{n}}{2-p} \left(t-x_{t} \right) + R_{o} \frac{p(3-2p)}{2-p} \right) \frac{2^{n}}{3^{n}} \cdot C_{so} + \left[\left(t-x_{t} \right) \frac{2^{n}}{2-p} \cdot \left(t-x_{t} \right) + C_{o} \cdot C_{p} \cdot C_{p} \right] \right\} \cdot \left[\left(t-x_{t} \right) \left(t-x_{t} \right) \left(t-x_{t} \right) + C_{o} \cdot C_{p} \cdot C_{p} \right] \right\} \cdot \left[\left(t-x_{t} \right) \left(t-x_{t} \right) \left(t-x_{t} \right) + C_{o} \cdot C_{p} \cdot C_{p} \right] \right\} \cdot \left[\left(t-x_{t} \right) \left(t-x_{t} \right) \left(t-x_{t} \right) \left(t-x_{t} \right) + C_{o} \cdot C_{p} \cdot C_{p} \right) \right] \cdot \left[t-x_{t} \right] \cdot \left$$

Уравнение /II/ - уравнение совместности деформаций верхней арматури и бетона, записанное в алгебранческой форме на основе последнего варианта модифицированной теории старения и алгебраизации на основе параболической зависимости между подывтегральными величинами. Уравнение /12/ - уравнение, записанное на основе гипотезы плоских сечений. В результате решения этой системы уравнений получим напряжение 🗸 в растянутой арматуре, необходимое для определения ширины раскрытия трещины.

Далее исследуем перераспределение напряжений, происходящее во времени после образования трешины. Система уравнений для момента затухания долзучести будет иметь вид:

$$\int_{0}^{27} \int_{0}^{27} dF + \partial_{\alpha}t \cdot F_{\alpha} - \partial_{\alpha}t \cdot F_{\alpha}' = 0.$$

$$\int_{0}^{27} \int_{0}^{27} (2 \cdot dF - \partial_{\alpha}t \cdot F_{\alpha}' (h_{0} - \alpha)' + Mg = 0.$$

$$\int_{0}^{27} \int_{0}^{27} (4 - 3p) + k_{0} \frac{\eta(3 - 2)}{2 - p} \frac{\eta}{3} \partial_{\alpha} \partial_{\alpha} + (y_{1} - y_{2}) \partial_{\beta} \partial_{\alpha} + \frac{\eta(3 - 2)}{2 - p} \frac{\eta(3 - 2)}{3} \partial_{\alpha} \partial_{\alpha} + (y_{1} - y_{2}) \partial_{\beta} \partial_{\alpha} + \frac{\eta(3 - 2)}{2 - p} \frac{\eta(3 - 2)}{3} \partial_{\alpha} \partial_{\alpha} + \frac{\eta(3 - 2)}{3} \partial_{\alpha} \partial_{\alpha} \partial_{\alpha} + \frac{\eta(3 - 2)}{3} \partial_{\alpha} \partial_{\alpha} \partial_{\alpha} + \frac{\eta(3 - 2)}{3} \partial_{\alpha} \partial_{\alpha$$

НАУКОВО-ТЕХНІЧНА БІБЛІОТЕКА Дніпропетровського національного університету залізничного транспорту

Імені академіка В.Лазаряна

- В этих уравнениях неизвестными являются напряжение в бетоне \mathcal{C}_{rx}^{67} на уровне сжатой арматуры, напряжения в сжатой и растянутой арматуре \hat{bat} и \hat{bat} и напряжение в бетоне над устьем трещины $\widetilde{\mathcal{S}_{\ell}}$. Полагая неизменным значение $\mathcal{X}_{\ell} = \mathcal{X}_{\mathcal{I}_{\ell}}$, находим все остальние неизвестные. При этом могут возникнуть такие случаи:
- 667 > R_{f} . Это означает, что суммарное влияние усадки и постоянной нагрузки приводит к углублению трещины. Тогда задаемся $G_{St}^{\ell r}=\mathcal{R}_{f}$ и из уравнений находим новые значения \mathcal{Z}_{t} , G_{St}^{rr}
- 2. $0 \leq c_{st}^{RF} \leq k_f$ глубина трещины остается постоянной и никаких коррективов не требуется.
- $O_{St} \stackrel{R}{\sim} O_{St}$, т.е. происходит частичное закрытие трещини. Принимаем $G_{ii} = 0$ /т.е. однозначная треугольная эторе/ и из приведенных выше уравнений определяем новое значение Хе и всех остальных неизвестных. Проделан числовой пример. В сечении свободно опертой на две опоры балки $\ell=8.0$ м действует постоянный изгисающий момент. Сечение балки прямоугольное, $\mathscr{E}=18$ см. h = 40 cm. $\alpha = 3.5$ cm. Fa = 12.56 cm². Moment B cevenum М₂ = 38062 кгс. см существенно меньше трещинообразующего.

Бетон марки 300. Параметры усадки : $\mathcal{Y}_{z} = 2.71$. $\mathcal{G}_{z} = 35 \cdot 10^{-5}$; $a_{i}=0,5$. Загружение балки и отсчет усадки соответствует возрасту 28 суток. В результате решения трещина образуется на 73 сутки. Решение системы нединейных уравнений производилось на ЭЕМ по стандартной программе. Далее рассматривалась запача анализа напряженного состояния необжатого стыка, работающего с трещиной, вызываемой временной нагрузкой. В момент времени 27 дабавляется момент Др

от временной нагрузки, установленной в опасное для рассматриваемого сечения стыка положение. Если напряжение от ル в сумме с напряжением $\mathcal{C}_{\ell\ell}$ /напряжение к моменту времени \mathcal{C}_{ℓ} от длительного действия момента $M_{\mathcal{G}}$ от постоянной нагрузки/ больше I,5 $\mathcal{R}_{\mathcal{F}}$, то в момент приложения временной нагрузки образуестя трещина /напряжение от M_p вычисляется по формуле $G_s = \frac{M_p \cdot x}{g_{s,n}}$ /. Если момент M_p приложенный в 27 не вызывает трещину, то уравнение /1,2,3,4 / следует решать, принимая за неизвестное \mathcal{E}_{I} и подставляя $\mathcal{G}_{\mathcal{E}_{I}}$ и $\mathcal{E}_{\mathcal{E}_{I}}$ по формулам /5-8/. При этом $\mathcal{C}_{\mathcal{E}_{I}}$ принимается равным I,5: $\mathcal{E}_{\mathcal{E}_{I}}$ Для момента образования трещини \mathcal{Z}_{I} записываем уравнения /9-12/. Только в уравнения моментов добавляется еще и момент 🤲 . Как только удаляется временная нагрузка, основа происходит перераспределение напряжений. Неизвестными в момент удаления временной нагрузки будут : напряжение на уровне верхней грани бетона $\mathcal{O}_{\delta(\tau, tdt)}$, напряжения в верхней и нижней арматуре $\mathcal{O}_{a(\tau, tdt)}$ и $\mathcal{O}_{a(\tau, tdt)}$. Записы ваются уравнения /9-II/ и уравнение, вытекающее из гипотезы плоских сечений:

\frac{\int_{a/\overline{\chi},td\overline{\chi}}{\int_{a}} = \frac{1}{\chi_{\sigma_t,td\overline{\chi}}} \frac{\int_{\sigma_t,td\overline{\chi}}{\int_t} \frac{1}{\chi_t} + \int_{\sigma_t,td\overline{\chi}}{\int_t} \frac{1}{\chi_t} + \int_{\sigma_t,td\overline{\chi}}{\int_t} \frac{1}{\chi_t} \frac{1}{\chi_t} \frac{1}{\chi_t} + \int_{\sigma_t,td\overline{\chi}}{\int_t} \frac{1}{\chi_t} + \int_{\sigma_t,td\overline{\chi}} \frac{1}{\chi_t} + \int_{\sigma_t,td\overline{\chi}} \frac{1}{\chi_t} + \int_{\sigma_t,td\overline{\chi}} \frac{1}{\chi_t} + \int_{\sigma_t,td\overline{\chi}} \frac{1}{\chi_t} \f

б Приведена методика определения перемещения нулевых точек во времени. В таблице I приведены величины приращения опорной реакции на промежуточной опоре /установка динамометра/, вычисленные на основе разных вариантов теории ползучести, и произведено сравнение с экспериментальными значениями. Из таблицы видно, что расчет железобетонных пролетных строений с изменяемой во времени

Таблица І

KG	Наименование теории ползучести	Приращение опорной реакции , КГС							- RZ
Наименование балки		Собственный вес	Сосредоточевные силы	Силы предвари- тельного напри- жения	Усадка бетона	Суммарное рас- четное	Суммарное эк- спериментальное Расхожление рас-		Статистические оценки расхождения в Ж
I. B-I 2. B-II 3. B-II 4. BH-I 5. BH-II 6. BH-II	"Классическая" теория ста- рения	,8	I40,8	-7, 5	10,0	I46,I	95,0 97,5 90,0 100,0 95,0 102,5		Ā=5I,4 占 =6,9
I. 5-I 2. 5-II 3. 5-II 4. 5H-I 5. 5H-II 6. 5H-III	Модифицирован— ная теория старения	,4	76,7	-6,6	II,5	8 4 ,I	95,0 97,5 90,0 100,0 95,0 102,5	II,5 I3,7 6,6 I5,9 II,5 I7,9	$\overline{\Delta}$ =12,8 \hat{G} =3,95
I. E-I 2. E-II 3. E-II 4. EH-I 5. EH-II 6. EH-II	Упрощенний вериент упру- гоползучего тела	,8	83.3	-7.4	II . 7	90,3	95,0 97,5 90,0 100,0 95,0 102,5	4.9 7,4 0,3 9,7 4,9 II,9	Ā =6,5 ঔ =3,3

статической скемой на основе "классической" теории старения приводит к существенной и недопустимой ошибке при определении перераспределения усилий во времени. Расчет на основе модифицированной теории старения с постоянным коэффициентом обратимости деформаций ползучести приводит к удовлетворительным результатам /расхождение ☐ = 12.8 % /. Расчет на основе модифицированной теории старения с переменным коэффициентом обратимости деформаций ползучести приводит к уточнению решения по сравнению с результатами, полученными по модифицированной теории старения с постоянным коэффициентом / расхождение между теоретическими и опытными данными составля- $\overline{\Delta}$ = 6,5 % /. Проведенное сравнение экспериментальных и расчетных данных подтвердило правомерность пренебрежения алиянием локальной трещини в пределах стыка на вводимые в расчет жесткости. Опыты подтвердили практически одинаковое перераспределение усилий во времени как в конструкциях с общатыми стыками, так и в конструкциях с необжатыми стыками. Среднее приращение опорного момента на момент времени 🗸 / окончание опита/ в балках с обжатыми стыками составило M_{\star}^{oreg} = 9900 кгс \cdot см и в балках с необжатных CTHEAME $M_{\star}^{arep} = 9400 \text{ kgc} \cdot \text{cm}$

BLBOJIL U PEKOMEHJALIVU

- Впервые проведенное экспериментальное исследование перерас пределения усилий в модели неразрезного преднапряженного пролетного строения с изменяемой во времени статической схемой подтвердило правомерность расчетных данных, долученных на основе молифицированной теории старения.
- 2. В неразрезных пролетных строениях, образованных из унифицированных сборных разрезных эдементов, об"единение обжатыми и необжатыми стыками является равноценным: выбор тех или иных типов стыков должен решаться их технологичностью.
- 3. Возможность применения необщатых стыков определяется шириной рескрытия трещин в них; необходимое для определения ширины раскрытия трещины эначение напряжения в арматуре рекомендуется находить по изложенной в работе методике с учетом перепада напряжений в момент образования трещини, изменения напряжения во времени и изменения напряжения при повторных нагружениях в период до затукания ползучести.
- 4. При расчетах трешиностойкости об"язательным является учет влияния усадки бетона , который также рекомендуется производить по приведенной в работе методике.
- 5. Определение усилий в пролетных строениях с изменяемой во времени статической схемой рекомендуется производить на основе модифицированной теории старения с переменным во времени коэффициентом обратимости деформаций ползучести /принятие переменного коэф-A A B SMC Ht фициента обратимости деформаций ползучести при однократном измене⊢

нии статической схемы в проведенном эксперименте повысило точность расчетных данных по сравнению с данными, полученными на основе модифицированной теории с постоянным \mathcal{L} , почти в два раза; при многократном изменении статической схемы можно ожидать более существенного расхождения экспериментальных данных по сравнению с данными, полученными на основе теории с постоянным \mathcal{L} ; недопустимым является расчет неразрезных пролетных строений мостов с изменяемой во времени статической схемой как образовавшейся сразу неразрезной системы без учета истории ее образования.

Основное содержание диссертации отражено в следующих работах автора :

- І. Исследование влияния типов стиков на работу неразрезных пролетных строений. Промежуточный отчет по госбиджетной теме ІУ.О8. 76067435. Б.671570 "Разработка и исследование рациональных конструкций, технико-экономический анализ и совершенствование методов расчета неразрезных и рамных железобетонных мостов. КАДИ, кафедра строительных конструкций и мостов. Киев 1977 (соавтор Онищенко М.М.).
- 2. Исследование напряженного состояния необжатого стыка. Промежуточный отчет по гособиджетной теме 19.08. 76067435. Б.735018 "Разработка и исследование рациональных конструкций, технико-экономический анализ и совершенствование методов расчета неразрезных железобетонных мостов". КАДИ, кафедра строительных конструкций и мостов. Киев- 1979 (соавтор Лившиц Я.Д.).
- 3. Определение напряжений в железобетонных балках, работающих с трещинами, которые вызываются совместным действием усадки бетона и длительной нагрузки. УкрНИИНТИ. Библиографический указатель ВИНИТИ "Депонированные рукописи", Киев. 1979, №7/93.

- 4. Исследование напряженного состояния ненапрягаемых стыков сборных предварительно-напряженных железобетонных конструкций. УкрНиИНТИ. Библиографический указатель ЫИНИТИ "Депонированные рукописи". Киев. 1979,№7.
- 5. Применение необжатых стыков в мостостроении. "Промышленное строительство и инженерные сооружения". Киев. "Буд Гвельник", 1979.M3.

БФ 26710. Подпис. к неч. 19/X 1979 г. Формат бумаги 60x84 /16. Учаиздал. 1. Услапечал. 1,5. Заказ 732. Тираж 100. HIBNI

Научно-исследовательский институт строительного производства Госстроя УССР Фотопечатная даборатория НИИСП Госствоя УССР, Киев, И. Клименко, 5/2.