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1. Introduction

Chaos, as a very interesting complex nonlinear phenomenon, has been intensively studied in the last four decades in the
science, mathematics and engineering communities. Recently, the chaos has been found to be very useful and having a great
potential in many technological disciplines, such as information and computer sciences, power systems protection, biomed-
ical systems analysis, flow dynamics and liquid mixing, encryption and communications, and so on. It is not surprising,
therefore, that academic researches on chaotic dynamics has evolved from traditional trends of analyzing and understanding
chaos to new directions of controlling and utilizing it (see, for example Refs. [1–13] and many references cited therein).

However there are only a few publications in which (from the mathematical point of view) the existence of chaotic
dynamics is rigorously proved. It is known that a numerical evidence may occasionally be misleading, since computer sim-
ulations have finite precision and experimental measurements have finite ranges in the time or frequency domain. The wit-
nessed behavior may be an artifact of the observation device due to physical limitations. Thus, a rigorous proof is often
necessary for full understanding of the chaotic dynamics in various nonlinear dynamic systems.

The present work is a continuation of the article [2]. Its appearance is dictated by the desire to generalize results derived
in [2] and, simultaneously, to do these results more rigorous.

The general theory of n-dimensional implicit discrete mappings was represented in [14]. It was based on a study of the
special explicit positive and negative mappings.

In the present paper for the analysis of 1-dimensional implicit discrete mappings, generated by the Ricker discrete pop-
ulation model [2], other approach is offered. A contingency proof between the Ricker mapping [2] and some 1-dimensional
explicit discrete mapping with the known chaotic properties is basis of this approach.

We will consider the following system (see [2]):
_xðtÞ ¼ a1xðtÞ þ a11y2ðtÞ þ a12yðtÞzðtÞ þ a22z2ðtÞ;
_yðtÞ ¼ b1yðtÞ þ c1zðtÞ þ bxðtÞyðtÞ;
_zðtÞ ¼ �c1yðtÞ þ b1zðtÞ þ cxðtÞzðtÞ:

8><
>: ð1Þ
. All rights reserved.
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By Disc ¼ a2
12 � 4a11a22 denote the discriminant of the quadratic form a11y2 + a12yz + a22z2. For system (1) it is necessary to

distinguish two cases: (1) Disc > 0 and (2) Disc 6 0.

(1) Let Disc > 0. In this case we have a11y2 + a12yz + a22z2 = (ay + bz)(cy + dz), where a, b, c, d are real known constants.
Introduce new variables u and v defined by the formulas u = ay + bz, v = cy + dz. Assume that D = ad � bc – 0. Then
in these variables system (1) will take the form
_xðtÞ ¼ a1xðtÞ þ uðtÞvðtÞ;
_uðtÞ ¼ r1uðtÞ þ p1vðtÞ þ xðtÞðr2uðtÞ þ p2vðtÞÞ;
_vðtÞ ¼ q1uðtÞ þ h1vðtÞ þ xðtÞðq2uðtÞ þ h2vðtÞÞ:

8><
>: ð2Þ
where r1 = (b1d � c1c)/D, p1 = (�b1b + c1a)/D, r2 = bd/D, p2 = �bb/D, q1 = (�c1d � b1c)/D, h1 = (c1b + b1a)/D, q2 = �cc/D,
h2 = ca/D.

Suppose that in system (2) r2 = h2 = 0. (It can be if a = d = 0). Then we obtain a family of the systems similar to families
which were investigated previously in numerous works (see, for example [15–21]).
For example in [16] the system
_xðtÞ ¼ axðtÞ � yðtÞzðtÞ;
_yðtÞ ¼ �byðtÞ þ xðtÞzðtÞ;
_zðtÞ ¼ mxðtÞ � czðtÞ þ xðtÞyðtÞ

8><
>: ð3Þ
was considered. In this three-dimensional autonomous system with simple system structure a new chaotic 2 � 2-scroll
attractor was generated.
In [17–19] the system
_xðtÞ ¼ �ðab=ðaþ bÞÞxðtÞ � yðtÞzðtÞ � c;

_yðtÞ ¼ ayðtÞ þ xðtÞzðtÞ;
_zðtÞ ¼ bzðtÞ þ xðtÞyðtÞ

8><
>: ð4Þ
was analyzed. For system (4) the existence of two homoclinic orbits was proved. It was shown that system (4) has a chaotic
attractor of homoclinic type, when parameters of the system satisfy some conditions.
At last in [4] has proposed the new 3-D autonomous quadratic system
_xðtÞ ¼ aðyðtÞ � xðtÞÞ þ eyðtÞzðtÞ;
_yðtÞ ¼ cxðtÞ þ dyðtÞ � xðtÞzðtÞ;
_zðtÞ ¼ �bzðtÞ þ xðtÞyðtÞ;

8><
>: ð5Þ
which can generate a four-wing chaotic attractor with complicated topological structures.
Thus, systems (3)–(5) are special cases of system (1).

(2) Now let Disc 6 0. As far as we know this case was first considered in [2]. We mark that results got in [2] are incom-
plete. Therefore this case is the theme of further researches and in the present work it is not considered.
Further it will be shown that with the exception of known attractors, which were found in [2], system (1) possesses
chaotic attractors are not indicated in [2]. The existence of these attractors is explained by a presence in the dynamic
of system (1) an implicit iterated process of the Ricker type [2].

2. Research of implicit function F(x,y) = y � exp (a � y) � k � x � exp(b � x) = 0

(A) From the beginning in this section a few basic concepts of one-dimensional maps will be introduced.
By definition, put V ¼ ½0;1Þ. Introduce on the space V a metric d by the rule: 8v1;v2 2 Vd ¼ kv1 � v2k. Define by

h : V! V an explicit function under the formula h(v) = v � exp (r � v), where r > 0; v 2 V.
Let v⁄– 0 be a fixed point of h. It is obvious that v⁄ = r.
Denote by BdðaÞ ¼ fv 2 V : dðv ; aÞ < dg and BdðaÞ ¼ fv 2 V : dðv ; aÞ 6 dg open and closed balls in V. It is clear that

a P d P 0.

Definition 1 [12]. A point v� 2 V is called an expanding fixed point of h in Bdðv�Þ for some constant d > 0, if h(v⁄) = v⁄ and
there exists a constant k > 1 such that
dðhðxÞ; hðyÞÞP kdðx; yÞ; 8 x; y 2 Bdðv�Þ:
Furthermore, v⁄ is called a regular expanding fixed point of h in Bdðv�Þ if v⁄ is an interior point of h(Bd(v⁄)).
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Definition 2 [12] Assume that v⁄ is an expanding fixed point of h in Bdðv�Þ for some d > 0. Then, v⁄ is said to be a snap-back
repeller of h if there exists a point v0 2 Bd(v⁄) with v0 – v⁄ and h(m)(v0) = v⁄ for some positive integer m. Furthermore, v⁄ is said
to be a non-degenerate snap-back repeller of h if there exist positive constants l and d0 such that Bd0 ðv0Þ � Bdðv�Þ and
dðhðmÞðxÞ; hðmÞðyÞÞP ldðx; yÞ; 8x; y 2 Bd0 ðv0Þ:
Definition 3 [12]. The point v⁄ is called a regular snap-back repeller of h if h(Bd(v⁄)) is open and there exists a positive con-
stant c0 such that Bc0

ðv0Þ � Bdðv�Þ and v⁄ is an interior point of h(m)(Bc(v0)) for any positive c < c0.
Theorem 1 12. Assume that h : V! V has a regular and non-degenerate snap-back repeller v⁄, associated with v0;m and d as

specified in Definitions 1–3, h is continuous in Bdðv�Þ;hðmÞðvÞ is continuous in a neighborhood of v0. Further, h is continuous in
some neighborhoods of v1, . . . , vm�1, where vj = f(j)(v0) for j = 1, . . . ,m � 1. Then, there exists a compact and perfect invariant set
D � V containing a Cantor set such that h is chaotic in the sense of Devaney on D as well as in the sense of Li–Yorke, and it
has a dense orbit in D.

Now for the function h(v) we find parameters which are indicated in Definitions 1–3. According to Theorem 1 it will prove
that the map h is chaotic.

(a1) Estimate a distance between points h(v⁄ � d) and h(v⁄ + d), where d > 0. We have
dðhðv� � dÞ;hðv� þ dÞÞ ¼ kðv� � dÞ expðr � ðv� � dÞÞ � ðv� þ dÞ expðr � ðv� þ dÞÞk
¼ kv� expðr � v�Þ � exp d� d � expðr � v�Þ exp d� v� � expðr � v�Þ � expð�dÞ
� d � v� expðr � ðv� þ dÞÞk:
Since v⁄ exp (r � v⁄) = v⁄ from the last formula it follows that
dðhðv� � dÞ;hðv� þ dÞÞ ¼ kr � ðexpðdÞ � expð�dÞÞ � d � ðexpðdÞ þ expð�dÞkP 2d � ðr � 0:5 � ðexpðdÞ þ expð�dÞÞÞ
¼ k � dðv� � d;v� þ dÞ;
where k = r � 0.5 � (exp (d) + exp (�d)).
Let exp (d) = u. Assume that r � 0.5 � (exp (d) + exp (�d)) = k > 1. From here it follows that u2 � 2(r � 1)u + 1 < 0. This inequal-
ity has the solution 1 6 u < ½r � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr � 2Þ

p
�. Thus, if 0 6 d < ln½r � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr � 2Þ

p
� and r > 2, then k > 1.

(a2) We have h0(v) = (1 � v) � exp (r � v). A maximum point of the function h(v) may be found from the condition h0(v) = 0.
From here it follows that vmax = 1 and hmax = exp (r � 1). Thus, if r > 1 then the function h(v) will be non-monotone and
unimodal on this interval: the interval [0,1) is an increasing interval and the interval (1,1) is a decreasing interval.
Taking into account item (a1) we get that at r > 2 the point v⁄ = r is a repeller (kh0(r)k > 1 at r > 2). It is clear that v⁄

is a regular expanding fixed point of h in Bdðv�Þ.
(a3) Consider the process
v iþ1 ¼ v i expðr � v iÞ; i ¼ 0;1;2; . . . ; ð6Þ
where r > 0, vi > 0; i = 0,1,2, . . .

By definition, put W ¼ ½0;1�. Let T : V!W be a continuous map given by the formula w = (2/p) � arctanv. Since
limv?1(2/p) � arctanv = 1 then we can consider that T is a homeomorphism and TðVÞ ¼W;T�1ðWÞ ¼ V. By
gðwÞ � T�1ðhðTðwÞÞ ¼ 2
p

arctan tan
pw
2
� exp r � tan

pw
2

� �� �
ð7Þ
define the continuous conjugate to h mapping g : W!W [13].
The function g(w) is similar to the function h(v): wmax = 0.5 and gmax = (2/p) � arctan exp (r � 1) < 1 (limr?1gmax = 1); the

interval [0,0.5) is an increasing interval and the interval (0.5,1] is a decreasing interval. Therefore, if w⁄ = r > 0.5 then (2/
p) � arctan exp (r � 1) > (2/p) � arctan r. From here it follows that exp (r � 1) > r and r > 1.

It is clear that the inverse mapping g�1(w) has two branches: g�1
1 ðwÞ and g�1

2 ðwÞ, where each of the mappings g�1
1 ðwÞ and

g�1
2 ðwÞ is invertible. Define the function G : W!W by the rule
GðwÞ ¼ g�1
i1

g�1
i2

. . . g�1
ik
ðwÞ

� �� �� �
; k ¼ 2;3; . . .
where either ik = 1 or ik = 2. It is clear that the mapping G(w) is monotonically.
The mapping G(w) has at least one fixed point w⁄. It is known that the fixed point w⁄ of the mapping G(w) corresponds to a

fixed point w⁄⁄ of the mapping g(k)(w) = g(g(. . .g(w))). The point w⁄⁄ of the mapping g(k)(w) corresponds to either a fixed point
or a p-cycle of the mapping g(w). If w⁄⁄ is a fixed point of g(w) then it is possible only at i1 = i2. Since it is possible to take any
integer k and arbitrarily choose numbers i1, i2 from 1 to 2, then from the condition g�1

1 g�1
2 ðwÞ

� �
– g�1

2 g�1
1 ðwÞ

� �
it follows that

the non-monotone function g(w) can have any number of cycles of different multiples and an uncountable set of non-peri-
odic trajectories.
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Fig. 1. The mapping g(x); r = 3.2.
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Fig. 2. The mapping g(g(x)); r = 3.2.
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We show that at some values of the parameter r function (7) can be chaotic. For this purpose we specify those values of
the parameter r at which in system wi+1 = g(wi), i = 0,1,2, . . . , a 3-cycle appears.

The equations w = g(w), w = g(g(w)), and w = g(g(g(w))) are being solved difficult. Therefore, we use by the conjugation of g
and h. (On Figs. 1–4 two iterations of mappings g and h are shown.)

Let v = h(v) � vexp (r � v). Then at r > 1 in system (6) there exists 1-cycle. Let v = h(h(v)) � vexp (2r � v � vexp (r � v)). In
this case at r > 2.008 in system (6) there exist 1-cycles and 2-cycles. Now let v = h(h(h(v))) � vexp (2r � v � vexp (r � v)) � exp
(r � vexp (r � v) exp (r � vexp (r � v))). In this case at r > 3.103 in system (6) there exist 1-cycles, 2-cycles, and 3-cycles. (The
indicated values r can be found by any mathematical package which has a numeral solution program of transcendental
equations.)

According to Sharkovsky’s Theorem [13] a cycle of period 3 implies cycles of all periods. Thus, in system wi+1 = g(wi) there
exist all cycles with period 2i, i = 0,1,2, . . . . According to Singer’s Theorem [13] in the discrete system wi+1 = g(wi),
i = 0,1,2, . . . , at any n and some value of parameter r = rn there are all unstable cycles of period 2i, i = 0, . . . ,n � 1, and one
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Fig. 3. The mapping h(x); r = 3.2.
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Fig. 4. The mapping h(h(x)); r = 3.2.
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stable cycle of period 2n. If r = r1 = 3.103 then mapping g(w) has a semi-stable trajectory S in any neighborhood of any point
of this trajectory lie points of a countable set of unstable cycles of all periods 2i, i = 0,1,2, . . .. Therefore, a set of all periodic
points is density in W. (Any point of S with given accuracy can be approximated by some periodic point.)

(a4) In this item Definitions 1–3 will be carried on the space W and the map g : W!W. Let w⁄– 0 be a fixed point of g.
Assume that r > 3.103. Then for any the iterated function g(m)(w) on interval [0,1] there are 2m fixed points
w�0 ¼ 0;w�1; . . . ;w�l�1, where l = 2m. Among these points there is the fixed point w⁄.
Suppose that w�l�2 ¼ w�. It is obvious that the equation g(m)(w) = w⁄ has also 2m real roots n0, . . .nl�1 on interval [0,1].
The space W is bounded. Therefore, the distance between two nearest fixed points tends to 0: limm!1d w�;w�l�1

� �
¼ 0.

It means that limm?1d(w⁄,nl�1) = 0.
It is clear that g(nl�2) = g(w⁄). From here it follows that there exists a point w0 such that nl�2 = g(m�1)(w0) and
g(g(m�1)(w0) = g(g(m�1)(w⁄) = w⁄. Furthermore, we have limm?1d(w⁄,w0) = 0.
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(a5) Let us remind that by virtue of contingency of the maps g and h all assertions which are valid for g take place and for h
[13].

With the help of the operator T�1 we return from the space W to the space V. Then there exists the point v0 = T�1(w0) for
which the conditions of Definition 2 are fulfilled.

Indeed, let v⁄ = h(m)(v0) and
Bd2 ðv0Þ � Bd1 ðv�Þ � Bdðv�Þ; d2 < d1 < d;
be a sequence of embedded balls. We have
dðhðmÞðxÞ; hðmÞðyÞÞP kdðhðm�1ÞðxÞ;hðm�1ÞðyÞÞP . . . P kmdðx; yÞ;8x; y 2 Bd1 ðv�Þ:
It is clear that l = km and dm
2 < dm

1 < d. Consider the sequence {vj = h(j)}, j = 0, . . . ,m, where v j 2 Bd1 ðv�Þ. Let d2 = max
(d(v0,v1), . . . ,d(v0,vm)). According to item (a4) for large enough m the distance d(v⁄, v0) may be arbitrarily small. Therefore,
dðhðmÞðxÞ; hðmÞðyÞÞP ldðx; yÞ; 8x; y 2 Bd2 ðv0Þ
and all conditions of Definition 2 are fulfilled. The point v⁄ is the non-degenerate snap-back repeller of h.
Finally, we verify the realization of conditions of Definition 3. Suppose opposite: the point v⁄ is not an interior point of

h(m)(Bc(v0)) for any positive c < d2. In this case the point v⁄ belongs to boundaries of sets hðmÞðBcðv0ÞÞ, Bd1 ðv�Þ, and Bdðv�Þ.
In this case we get d ¼ ln½r � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr � 2Þ

p
�; k ¼ 1, and r = 2 in contradiction with supposition r > 2. Thus, we have c0 = d2

and the point v⁄ is a regular snap-back repeller of h. It means that all conditions of Theorem 1 is satisfied. Therefore, the
map h : V! V is chaotic.

(B) Further, in this section we will consider that variables x P 0, y P 0, and parameters k > 0;a 2 R; b 2 R.
The following theorem can be found in any textbook on advanced calculus or mathematical analysis.

Theorem 2 (Implicit function Theorem). .Assume that a function Hðx; yÞ : R� R! R is continuously differentiable at each point
(x,y) of an open set D � R� R. Let (x0,y0) be a point in D for which H(x0,y0) = 0 and for which H0yðx0; y0Þ– 0. Then there exist
neighborhoods U � R of x0 and V � R of y0 such that for each x 2 U the equation H(x,y) = 0 has a unique solution y 2 V. Moreover,
this solution can be given as y = h(x), where h(x) is continuously differentiable at x = x0.

Let us define singular points of the function F(x,y) = y � exp (a � y) � k � x � exp (b � x) = 0. These points are roots of the sys-
tem equations F 0xðx; yÞ ¼ 0; F 0yðx; yÞ ¼ 0. We get a unique singular point (xs,ys) = (�1/b, � 1/a). Since x P 0, y P 0, then at b > 0,
a > 0, at b > 0, a < 0, and at b < 0, a > 0 the first quadrant does not contain of singular points.

Let b < 0, a < 0. We calculate a discriminant Disc of the function F(x,y) = y � exp (a � y) � k � x � exp (b � x) = 0 at (x,y) = (xs,ys):
Disc ¼ F 00xx � F
00
yy � F 00xy

� �2
¼ �kab � expðaxþ byÞ < 0:
Thus, if b < 0, a < 0, then the function F(x,y) = 0 can have a self-intersection point. This point exists at implementation of the
condition F(�1/b, � 1/a) = k/(b � e) � 1/(a � e) = 0.

The last condition may be rewritten in the form b � ak = 0.
Consider the following cases: (a) b � ak < 0, a < 0, b < 0; (b) b � ak > 0, a < 0, b < 0; (c) a > 0, b < 0; (d) a < 0, b > 0.
We have
y0x ¼ �
F 0x
F 0y
¼ k

1þ b � x
1þ a � y expðb � x� a � yÞ:
(a) Let y � exp (a � y) = k � x � exp (b � x) = c P 0. Then the equation k � x � exp (b � x) = c has two roots. Therefore, the function

F(x,y) = y � exp (a � y) � k � x � exp (b � x) = 0 has two branches.
Let 1 + b � x = 1 + a � y = 0. It is means that x = xs = �1/b, y = ys = �1/a, and F(xs,ys) = (ea)�1 � k(eb)�1 = 0. The last equa-
tion contradicts by the condition b � ak < 0. Therefore, if 1 + b � x = 0, then 1 + a � y – 0.
If b � ak = 0, then ymax = ymin = �1/a. Therefore, if b � ak < 0, then "x 2 [0,1)ymax < �1/a for the lower branch of the
curve F(x,y) = 0, and ymin > �1/a for the upper branch of the curve F(x,y) = 0.
We have y0x ¼ 0 at x = xs = �1/b. As for y 	 0 we have 1 + a � y > 0, then by virtue of Implicit function Theorem the point
x = xs = �1/b is a maximum of the implicit function yl = fl(x) (the lower branch) and a minimum of the implicit function
yu = fu(x) (the upper branch). The case (a) is shown on Fig. 5.

(b) This case repeats the case (a) if to replace x by y. The point y = ys = �1/a is a maximum point for the left branch and a
minimum point for the right branch of the curve F(x,y) = 0. The case (b) is shown on Fig. 6.

(c) Let again y � exp (a � y) = k � x � exp (b � x) = c P 0. In this case the equation y � exp (a � y) = c has only one root. Therefore,
the function F(x,y) = y � exp (a � y) � k � x � exp (b � x) = 0 has one branch (see Fig. 7).

(d) This case repeats the case (c) if to replace x by y (see Fig. 8).
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Fig. 5. The curve exp y � (�2 � y) � 1.95 � x � exp (�4 � x) = 0.
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Fig. 6. The curve y � exp (2 � y) � 2.05 � x � exp (�4 � x) = 0.
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Notice that if either the condition (a) or the condition (c) is valid, then the magnitude y is bounded (y < �1/a). Since at
x ?1 we have y = k � x � exp (b � x � a � y) < k1 � x � exp (b � x), where k1 = k � e, then the function y = k � x � exp (b � x � a � y) be-
haves also as the function k1 � x � exp (b � x) (here b < 0).

In future, we will be interested by cases (a) and (c). Let b = �p, a = �m, where p > 0. Then the case (a) takes place at
�p + k �m < 0 and 0 6 y < 1/m; the case (c) takes place at �p + k �m < 0 and m < 0.

Let us rewrite the equation F(x,y) = 0 in the form: y = kx � exp (�px + my).
Consider the implicit discrete mapping
xnþ1 ¼ kxn � expð�pxn þmxnþ1Þ; n ¼ 0;1;2; . . . ð8Þ
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Fig. 8. The curve y � exp (�2 �y) � 5 � x� exp (4 � x) = 0.
Theorem 3. Assume that p > 0, k > 0, x0 > 0. Let either

(1) m > 0, � p + km < 0, and x0 < 1/m (for example, p = 1, m = 0.1, and kcr = 9.025) or
(2) m 6 0 (for example, p = 1, m = 0, and kcr = 24.533; p = 1, m = �0.1, and kcr = 66.686). Then mapping (8) is chaotic.
Proof. From conditions of Theorem 1 and Implicit function Theorem it follows that the explicit function y = f(x) is derived
from the implicit function F(x,y) = 0 which satisfies by the condition: f([0,1)) � [0,1).

Let in (8) m – 0. With the help of replacements vi = pxi of variables xi the process (8) can be represented in the form
v iþ1 ¼ v i expðr � v i þ sv iþ1Þ; i ¼ 0;1;2; . . . ð9Þ
where s = m/p, r = lnk > 0,vi > 0; i = 0,1,2, . . .
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Fig. 9. The bifurcation diagram of the mapping xn+1 = k xn � exp (�xn + 0.1 � xn+1); kcr = 9.025.
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We fix the value v0 ¼ v�0. Use Implicit function Theorem for deriving of solutions v�1;v�2; . . . of Eq. (9) with respect to vi+1;
i = 0,1,2, . . .. Then process (9) may be rewritten in the explicit form
v iþ1 ¼ v i exp r þ sv�iþ1 � v i
� �

; i ¼ 0;1;2; . . . ð10Þ
Let m > 0 (s > 0). Then we have v�i < 1=s and r þ sv�iþ1 < r þ 1. Therefore, process (10) may be approximated by process
tiþ1 ¼ ti expðr þ 1� tiÞ; i ¼ 0;1;2; . . . : ð11Þ
Since the chaos arises up in system (11) at r + 1 = 3.103, in system (10) it will arise up at r � 1 = 2.103 (see items (a1) – (a5)).
If m < 0(s < 0) then process (6) is approximated by process (10). In this case r � 1 ¼ 3:103 < r � sv�iþ1 and the chaos arises up
in system (10) at r + 1 = 4.103. Taking into account that k = lnr, we get statements of Theorem 3. (On Figs. 9–11 bifurcation
diagrams of the map xn+1 = k � exp (�xn + s � xn+1) are shown.) h
3. Chaotic attractors of system (1)

Consider the system
_xðtÞ ¼ a1xðtÞ þ a11y2ðtÞ þ a12yðtÞzðtÞ þ a22z2ðtÞ;
_yðtÞ ¼ d1xðtÞ þ b1yðtÞ þ c1zðtÞ þ bxðtÞyðtÞ;
_zðtÞ ¼ e1xðtÞ þ f1yðtÞ þ g1zðtÞ þ cxðtÞzðtÞ;

8<
: ð12Þ
where a1; . . . ; g1; c 2 R.
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Fig. 10. The bifurcation diagram of the mapping xn+1 = kxn � exp (�xn � 0.1 � xn+1); kcr = 66.686.
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Fig. 11. The bifurcation diagram of the mapping xn+1 = kxn � exp (�xn); kcr = 24.533.
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Theorem 4. Assume that for system (12) conditions a11/b < 0, a22/c < 0, and a2
12 � a11a22 > 0 are valid. Suppose also that either
bþ c – 0;
a2

12

ðbþ cÞ2
� a11a22

bc
< 0
or
bþ c ¼ 0; a12 ¼ 0:
Besides, we will consider that the matrix
0 0 0
d1 b1 c1

e1 f1 g1

0
B@

1
CA ð13Þ
has the spectrum {0,b ± ic}, where b < 0; c – 0; i ¼
ffiffiffiffiffiffiffi
�1
p

. Then there exists a set W :¼ {x0,y0, z0} of initial values such that
"(x0,y0,z0) 2W the solution of system (12) with initial values (x0,y0, z0) is bounded.
Proof. 1.Introduce into system (1) the new variables q and / under the formulas: y = qcos/, z = qsin/, where q > 0. Then, we
get
_xðtÞ ¼ a1 � xðtÞ þ q2ðtÞ � ða11 cos2 /ðtÞ þ a12 cos /ðtÞ sin /ðtÞ þ a22 sin2 /ðtÞÞ;
_qðtÞ ¼ ðb1 þ ðb cos2 /ðtÞ þ c sin2 /ðtÞÞ � xðtÞÞ � qðtÞ;
_/ðtÞ ¼ �c1 � ðb� cÞ cos /ðtÞ � sin /ðtÞ � xðtÞ;

8>><
>>: ð14Þ
where a1; a11; a12; a22; b; c; b1; c1 2 R.
Let b1 = c1 = 0. Then system (14) takes the form
_xðtÞ ¼ a1 � xðtÞ þ q2ðtÞ � ða11 cos2 /ðtÞ þ a12 cos /ðtÞ sin /ðtÞ þ a22 sin2 /ðtÞÞ;
_qðtÞ ¼ ðb cos2 /ðtÞ þ c sin2 /ðtÞÞ � xðtÞÞ � qðtÞ;
_/ðtÞ ¼ �ðb� cÞ cos /ðtÞ � sin /ðtÞ � xðtÞ:

8>><
>>: ð15Þ
From the second and third equations of system (15) it follows that
dq
q
¼ � 1

b� c
b cos2 /þ c sin2 /

sin / cos /
d/; ln q ¼ � 1

b� c

Z
b cos2 /þ c sin2 /

sin / cos /
d/;
and
q ¼ q0j sin /j
�b
b�c � j cos /j

c
b�c;
where q0 ¼ qð0Þ > 0; �b
b�c < 0; c

b�c < 0. Then first equation of system (15) can be rewritten in the form



Fig. 12. The phase portrait of system (22) for t = 10. Here a = 10, b = 15, x0 = �0.01, y0 = �0.01, z0 = 0.1.
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Fig. 13. The first-return map to a Poincare section for system (22) at a = 10, b = 15; here x = xn, y = xn+1 are sequential maximus of the function x(t);
n 2 {1,2,3, . . .}. The trajectory goes out on a limit cycle: limn?1xn = 5.634.
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_xðtÞ ¼ a1 � xðtÞ þ q2
0j sin /ðtÞj

�2b
b�c � j cos /ðtÞj

2c
b�c � ða11 cos2 /ðtÞ þ � � � þ a22 sin2 /ðtÞÞ: ð16Þ
It is clear that all maximums ximax(i ?1) of the function x(t) can be found from the condition _xðtÞ ¼ 0. By virtue of the con-
dition a2

12 � a11a22 > 0 the equation a11cos2/ + a12sin/cos/ + a22sin2/ = 0 has an infinite set of roots /1 = /(t1), /2 = /(t2), . . . .
Therefore, if a1 – 0, then ximax satisfies by the condition
xi max � ðsin2 /ðtiÞÞ
b

b�c � ðcos2 /ðtiÞÞ
�c

b�c ¼ q2
0 � ða11 cos2 /ðtiÞ þ � � � þ a22 sin2 /ðtiÞÞ

�a1
� si;
where limi?1ti =1. From here it follows that if limi?1si = const – 0, then limi?1jximaxj =1 and limi?1sin/(ti) cos/(ti) = 0. If
limi?1si = 0, then limi?1jximaxj = 0. At a1 = 0 the boundedness of solutions for system (15) was proved in [2]. Thus, 8a1 2 R

there exist the initial values (x0,y0,z0) such that the solution of system (15) with these initial values is bounded.
2. We take advantage of item (c) from the proof of Theorem 4 [2]. Let us replace in this item the matrix
0 0 0
0 b1 c1

0 �c1 b1

0
B@

1
CA
by matrix (13).



Fig. 14. The phase portrait of system (22) for t = 15. Here a = 7, b = 15. There are two coexisting attractors; it is one chaotic attractor and one limit cycle.
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Let us consider that for system (12) at d2
1 þ e2

1 ¼ 0 the conditions of Theorem 4 are valid. Then Theorem 4 from this paper
is an obvious generalization of Theorems 1, 4, and Theorem 6 [2]. (Notice that condition a1 > 0 in the proofs of Theorem 4 and
Theorem 6 [2] is surplus.)

Now assume that d2
1 þ e2

1 – 0. Then taking advantage of Gronwall–Bellman inequality by the same method as in the proof
of Theorem 4 [2] it is possible to prove the boundedness of solutions of system (12) and at d2

1 þ e2
1 – 0. h

From the first equation of system (14) it follows that the equation VðtÞ � _xðtÞ � a1xðtÞ ¼ 0 has a countable number of roots
t1, . . . ti, . . . , where /(ti) = kip; ki is an integer. It means that the function V(t) changes a sign with period p. Hence, extremum
points of function x(t) (for example maximums) has a period /(ti+2) � /(ti) = p.

Let x(ti) = xi,q(ti) = qi,/(ti) = /i, where ti are roots of the first equation _xðtiÞ ¼ 0 of system (14), i = 1,2, . . .. We can consider
that < /i�1 < /i < /i+1 < /i+2 < . . ..

We will assume that one of the following two variants takes place:
either

(1) ti, ti+1, and ti+2 are sequential a minimum, a maximum, and a minimum of the function q(t); i = 1,2, . . .or
(2) ti, ti+1, and ti+2 are sequential a maximum, a minimum, and a maximum of the function x(t); i = 1,2, . . .. Assume that the

second variant takes place.

Theorem 5. Assume that a1 > 0 and there exists a moment t⁄ such that from the condition t > t⁄ it follows that x(t) P 0. Let
"i 2 {1,3,5, . . .} the condition
Z tiþ2

ti

bþ c þ ðb� cÞ cos 2/ðsÞ � b1ðb� cÞ
c1

sin 2/ðsÞÞ
� �

� xðsÞds < 0: ð17Þ
be fulfilled. Then under the conditions of Theorem 4 in system (1) there are either limit cycles or chaotic attractors.

Proof. From system (14) we have:
xðtiÞ ¼ �
q2ðtiÞ � ða11 cos2 /ðtiÞ þ a12 cos /ðtiÞ sin /ðtiÞ þ a22 sin2 /ðtiÞÞ

a1
; ð18Þ
i = 1,3, . . .

Consider the fraction
xiþ2

xi
¼

q2
iþ2 � a11 cos2 /iþ2 þ a12 cos /iþ2 sin /iþ2 þ a22 sin2 /iþ2

� �
q2

i � ða11 cos2 /i þ a12 cos /i sin /i þ a22 sin2 /iÞ
:

From (18) it follows that "i the magnitude /(ti+2) � /(ti) = /(T), where /(T) is a period of the function a11cos2/(t) + a12cos/(t)
sin/(t) + a22sin2/(t). Then,
a11 cos2 /iþ2 þ a12 cos /iþ2 sin /iþ2 þ a22 sin2 /iþ2

a11 cos2 /i þ a12 cos /i sin /i þ a22 sin2 /i

¼ 1:



Fig. 15. The phase portrait of system (22) for t = 15. Here a = 7.5, b = 15. There are three coexisting limit cycles.

Fig. 16. Lyapunov exponents Kx, Ky, Kz for system (22) at a = 5 
 15, b = 15.
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Any function of the kind d11cos2/ + d12cos/sin / + d22sin2/ always can be transformed to the form g1 þ g2 cos 2/þ
g12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 2/

p
. Hence, the period of these functions is equal p. Then from the third equation of system (14), we have
/ðtiþ2Þ � /ðtiÞ ¼ p ¼ c1ðtiþ2 � tiÞ þ
b� c

2

Z tiþ2

ti

sin 2/ðtÞxðtÞdt; c1 < 0:
(If c1 > 0, then /(ti+2) � /(ti) = �p.)
Therefore, the fraction xi+2/xi may be rewritten as
xiþ2

xi
¼ exp

2b1p
c1
þ
Z tiþ2

ti

½bþ c þ ðb� cÞ cos 2/ðsÞ � b1ðb� cÞ
c1

sin 2/ðsÞÞ� � xðsÞds
" #

¼ k exp
Z tiþ2

ti

bþ c þ ðb� cÞ cos 2/ðsÞ � b1ðb� cÞ
c1

sin 2/ðsÞÞ
� �

� xðsÞds
" #

;

where k = exp (2b1p/c1).
Let us introduce the function
hð/Þ ¼ bþ c þ ðb� cÞ cos 2/� b1ðb� cÞ
c1

sin 2/:



Fig. 17. Lyapunov exponents Kx, Ky, Kz for system (22) at a = 10, b = 5 
 15.

Fig. 18. The phase portrait of systems (23) for t = 10. Here c = 10, d = 15. There is one chaotic attractor.
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The bounded function x(t) is a monotone decreasing on the interval [ti, ti+1] and it is a monotone increasing on the interval
[ti+1, ti+2]. Then we have (it us known Theorem about average value):
Z tiþ2

ti

hð/ðsÞÞ � xðsÞds ¼
Z tiþ1

ti

hð/ðsÞÞ � xðsÞdsþ
Z tiþ2

tiþ1

hð/ðsÞÞ � xðsÞds

¼ xðti þ 0Þ
Z n

ti

hð/ðsÞÞdsþ xðtiþ2 � 0Þ
Z tiþ2

f
hð/ðsÞÞds; ð19Þ
where ti 6 ni 6 ti+1, ti+1 6 fi+2 6 ti+2. We can consider that t⁄ < ti. Then the function x(t) is positive on the interval [ti, ti+2].
Hence, from (19) it follows that
Z tiþ2

ti

hð/ðsÞÞ � xðsÞds ¼ pixi þ piþ2xiþ2;
where the magnitudes pi ¼
R ni

ti
hð/ðsÞÞds; piþ2 ¼

R tiþ2
fiþ2

hð/ðsÞÞds can have any signs.
Finally, we get
xiþ2 ¼ kxi expðpixi þ piþ2xiþ2Þ; i ¼ 1;3;5; . . . ;2n� 1; . . . ð20Þ
It is obvious that if pixi + pi+2xi+2 < 0 then condition (17) is hold. Suppose that pi ¼ �p < 0; piþ2 ¼ m 2 R. By Theorem 4 all
solutions of system (1) are bounded. Therefore, the conditions (a) and (c) of Section 2 can be united in one condition:
�p + km < 0 (see Section 2). For example, assume k = 20, pi = �4, pi+2 = �1. Then after the first iteration, we have the
equation x = kxexp ((pi + pi+2)x); this equation has two roots: 0, 0.6. After the second step, we get the equation
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Fig. 19. The first-return map to a Poincare section for system (23) at c = 10, d = 15; here x = xn, y = xn+1 are sequential maximus of the function x(t);
n 2 {1,2,3, . . .}.

Fig. 20. The phase portrait of system (23) for t = 15. Here c = 10, d = 5. There are three coexisting limit cycles.
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x = k2x exp ((pi + 2pi+2)x + pikexp ((pi + pi+2)x)); this equation has four roots: 0, 0.11, 0.6, 0.82 and so on. Finally, we derive
the Feigenbaum scenario of the doubling period. Since a1 > 0 then equilibrium point (0,0,0) is a saddle-focus. It means the
existence in system (1) of limit cycles or chaotic attractors. h

Theorem 5 can be generalized in the following way.
Assume that system (1) has a chaotic attractor or a limit cycle. If in system (12) the values d1 = 0, e1 = 0 are not bifurca-

tions, then for small enough numbers jd1j and je1j system (12) has also a chaotic attractor or a limit cycle.
Let xi = zi > 0, pi = �1, pi+2 = 0, xi+2 = zi+1. Then process (20) may be rewritten as:
ziþ1 ¼ zi expðr � ziÞ; r ¼
2pb1

c1
> 0; i ¼ 0;1;2 . . . ð21Þ
Process (21) is called the Ricker discrete population model [22,23]. It is known [22] that the Ricker model has 2-cycle, 4-cycle
and chaotic attractors when r = 2.1, r = 2.6, and r = 3, respectively.



Fig. 21. Lyapunov exponents Kx, Ky, Kz for system (23) at c = 5 
 15, d = 15.

Fig. 22. Lyapunov exponents Kx, Ky, Kz for system (23) at c = 10, d = 10 
 20.

Fig. 23. Evolutions of the attractor of system (24) for t = 10.
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Fig. 24. Evolutions of the attractor of system (25) for t = 10.
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4. Examples

Below, on Figs. 12, 14, 15, 18, 20, 23, 24 for system (12) at different values of parameters, new types of chaotic attractors
are represented. In addition on Figs. 13, 16, 17, 19, 21, 22 the Lyapunov exponents and Poincare mappings are shown. They
verify the presence of the chaotic dynamics in the considered systems.

1. Consider the system depending on parameters a and b:
_xðtÞ ¼ 3xðtÞ � y2ðtÞ þ z2ðtÞ;
_yðtÞ ¼ �1yðtÞ � 20zðtÞ þ axðtÞyðtÞ;
_zðtÞ ¼ xðtÞ þ 20yðtÞ � 1zðtÞ � bxðtÞzðtÞ:

8><
>: ð22Þ
2. Consider the system depending on parameters c and d:
_xðtÞ ¼ 4xðtÞ � y2ðtÞ þ z2ðtÞ;
_yðtÞ ¼ �3yðtÞ � 250zðtÞ þ cxðtÞyðtÞ;
_zðtÞ ¼ xðtÞ þ 250yðtÞ � 3zðtÞ � dxðtÞzðtÞ:

8><
>: ð23Þ
3. Consider the system
_xðtÞ ¼ �y2ðtÞ þ z2ðtÞ;
_yðtÞ ¼ yðtÞ � 250zðtÞ þ 10xðtÞyðtÞ;
_zðtÞ ¼ 250yðtÞ þ zðtÞ � 15xðtÞzðtÞ:

8><
>: ð24Þ
4. Consider the system
_xðtÞ ¼ �5xðtÞ þ ð1:6yðtÞ þ zðtÞÞðyðtÞ � zðtÞÞ;
_yðtÞ ¼ 2yðtÞ þ 28zðtÞ � xðtÞyðtÞ;
_zðtÞ ¼ xðtÞ � 28yðtÞ þ 2zðtÞ þ xðtÞzðtÞ:

8><
>: ð25Þ
Finally, we notice that for systems (22), (23) the conditions of Theorem 5 (and its generalizations at d1 = 0, e1 = 1) are fulfilled.
For systems (24), (25) these conditions dissatisfy.

5. Conclusion

This paper has reported the new 3-D smooth autonomous chaotic system (1) in which each equation has a quadratic
term. New types of chaotic attractors can be generated from the system. (At some values of parameters in this system
can exist Lorenz-like type attractors.) Basic properties of the new dynamical system have been analyzed by means of Lyapu-
nov exponents and Poincare map. This analysis verifies the existence of chaotic dynamics in system (1). A detailed investi-
gation of the characteristics of system (1) is left for the further studies.
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