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 A machine learning approach for the recent detection of crossing faults is presented in the paper. The basis for the research are the data of 
the axle box inertial measurements on operational trains with the system ESAH-F. Within the machine learning approach the signal processing 
methods, as well as data reduction classification methods, are used. The wavelet analysis is applied to detect the spectral features at measured 
signals. The simple filter approach and sequential feature selection is used to find the most significant features and train the classification 
model. The validation and error estimates are presented and its relation to the number of selected features is analysed, as well.
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The data mining methods are widely used in transportation 
research. The data-driven rail-infrastructure monitoring that is 
based on data fusion, feature extraction, selection and other 
data mining methods are depicted in [15]. In [16] authors 
describe the general methodology of big data analytics for track 
maintenance planning. An example of track quality analysis for 
the track maintenance with application of the machine learning 
methods is presented in [17]. The support vector classification 
and regression methods are used for optimization of freight traffic 
planning, [18]. The application of big data analysis of surface 
defect measurements together with axle box acceleration is used 
to facilitate grinding planning of rail segments, [19]. The big-data 
fusion and incremental learning is applied to solve the problem of 
position synchronization for the track geometry inspection, [20]. 
In the present paper, the sequential feature selection is used to 
find out the meaningful spectral features that correspond to the 
state of turnout immediately before its fault. The statistical model 
is developed to identify the state with the axle box acceleration 
measurements. 

2.	 Data pre-processing and feature extraction

The inertial measurements of ESAH-F system are subjected 
to a big number of unknown and unconsidered factors, such as the 
wheel profile irregularities and wear, lateral wheel position, etc.

This leads to a big deviation of measurement results that 
makes it very difficult to estimate the changes of a common 
crossing state. The usually used analysis of maximal axle box 
accelerations shows almost no changes of the value until the first 
crack of the rolling surface in common crossing occurs (Figure 2). 
This means that the conventional analysis suits well for condition 
monitoring of common crossings by detecting defects. Though the 

1.	 Introduction

Common crossing of turnout is one of the weakest elements of 
the railway superstructure. Despite many attempts in the last years 
to prolong its lifecycle [1-3], it is still 5-10 times lower than the 
lifetime of the ordinary rail track [4]. Moreover, the maintenance 
costs for turnouts are comparatively high due to demand for 
frequent inspections with relatively low automatisation. The 
process of common crossing deterioration is to a  great extent 
difficult to predict and thus to plan the maintenance works [3]. 
That can often cause big expenses because of unplanned traffic 
interruptions and train delays.

Its application on operational trains could provide almost 
continuous monitoring of the track state.

The inertial measurement systems ESAH-M and ESAH-F 
are developed with the DB AG (German  railway company) 
for the estimation of common crossings. The systems provide 
acceleration measurements complemented by positioning sensors 
on track [5-6] with Electronic Analysis System of Crossing 
Portable (German ESAH-M, Figure 1, left). The vehicle axle box 
measurements [6-8] are provided with Electronic Analysis System 
of Crossing - Train (German ESAH-F, Figure 1, right).

The main problem of inertial measurements on railway track 
is a rather big uncertainty together with unknown criteria for the 
corresponding maintenance works [9]. A lot of recent researches 
are devoted to this problematic. A  quantitative relationship 
between the characteristics of the axle box accelerations and the 
track defects for their early detection is proposed in [10-11]. The 
acquisition of axle box accelerations with their time-frequency 
analysis is shown in [12-13] for track monitoring purposes. 
Vibration-based condition monitoring was suggested in [14], 
based on in-situ measurements of the crossing vibrations of 
a railway turnout.
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•	 1.5 months before the first visible squats appearing: 73 
measurements with 107 successful records.
The wavelet transform was used to extract the feature set from 

the random enough time series of acceleration measurements. The 
Signal Processing, Statistics and Machine Learning Toolboxes are 
used for data processing and analysis [21].

All the data are synchronised with the maximal acceleration 
point. Time axis is changed to wheel position coordinate to reduce 
the influence of different train velocities. The example of signal 
spectral density distribution along the 11 m track and frequency 
range 0-25 kHz is shown in Figure 4. The low accelerations due 
to ballast settlements and wing-frog rail rolling surface begin 3 m 
before the impact point. The maximal acceleration appear at 
the impact point with frequency range 90-750  Hz. The highest 
accelerations reach up to 20  kHz. The spectral components of 
signal in Figure 4 can be visually divided into 3 main groups: 
lower than 800 Hz, 800-4000 Hz and 4000-20000 Hz.

faults are unexpected and often unpredictable, that leads to big 
expenses due to unplanned maintenance works and traffic delays.

The statistical analysis is based on the acceleration 
measurements of the ESAH-F system of the DB Systemtechnik. 
The measurements were carried out at operational passenger 
double-decker trains on two axle boxes of one bogie.

The turnouts number as well as motion direction were 
detected by the GPS. The sampling rate used is 50 kHz. The 
analysed turnout of type 1/12 was measured along all its lifecycle 
ca. 32 megatons. The operating load at turnouts was 27 megatons 
per year with mixed traffic. The general number train passages is 
229, with 2 axle box 3D acceleration measurements. The typical 
measurement of 1 vertical acceleration together with the cloud of 
other measurements is shown at Figure 3.

The measurements are divided for the statistical analysis in 
two groups: 
•	 the beginning of lifecycle: 52 measurements with 104 

acceleration records;

Figure 1 The inertial measurement systems (left - ESAH-M, right - ESAH-F)

    
Figure 2 Wheel ACC Amplitudes during the lifecycle (left) and surface images of a common crossing (right). Photo material:  

DB Systemtechnik GmbH

Figure 3 Example of the wheel ACC measurement (blue) and group of the wheel ACC measurements (red)
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All 211 observations are divided into a training set of size 155 
and a test set of size 56. The model is tested in two ways: holdout 
validation and cross-validation. Within the holdout validation the 
features are selected using the training data and the performance 
is judge based on the test data.

To find out how well the two groups (Figure 5) are separated 
by each feature, the pairwise t-test statistic is applied [21]. Figure 
6 shows the difference between the groups and the critical value 
of feature to reject the null hypothesis.

According to Figure 6, there are a lot of features with 
statistically significant differences between the groups. The 
diagram of empirical cumulative probability of null hypothesis 
(Figure 7) shows that there are about 50 % features with strong 
discrimination power.

Even though there are big statistical differences between the 
groups, it is not enough to estimate the classification uncertainty 
and decide how many features are necessary. A statistical 
model should be developed to classify new observations to 
the corresponding group. The model is developed within the 
quadratic discriminant analysis (QDA) [23]. The classification 

To receive the limited number of features for each observation, 
the wavelet coefficients are segmented in raster 20 x 20 that 
correspond to logarithmic frequency range 10 Hz - 20 kHz and 
longitudinal coordinate 1.5-8.5 m. Overall number of features 
are limited to 400. The segmented and collected features for two 
groups are shown in Figure 5.

3.	 Feature selection

The goal feature selection is to reduce the dimension 400 of 
the data by finding a small set of important features, which can 
give good classification performance. Feature selection algorithms 
are divided into 3 categories [22]: filter methods, wrapper 
methods and embedded methods. The simplest filter method 
of sequential feature selection is used for the present research. 
It does not consider the relationships between variables but is 
effective in computation time and robust to overfitting.

To estimate the performance of a classification model another 
data set should be chosen that was not used to build the model. 

Figure 4 Example of spectral density distribution along 11 m track (common crossing at position 2-4 m)

Figure 5 Example of features reduction 20 x 20 (left) and their collection for two periods of lifetime (right: 1st group - above,  
2nd group - below, see Figure 2)
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increases if more than 27 features are used. The reason is the 
overfitting. The MCE for the resubstitution validation consistently 
decreases with the number of features and even reaches zero when 
more than 60 features are used. That means that the train data can 
not be used for estimation of the trained model.

The used simple feature selection method is simple, fast in 
calculations and enables reaching almost 5% prediction error. 
However, the method takes into account the interaction between 
one pair of features and does not consider possible interaction 
with all other features. Some found features can be dependent on 
each other so that not all the features are necessary.

The more advanced feature selection algorithms can improve 
the performance, such as in [24-25]: sequential algorithms, 
exponential algorithms, randomized algorithms. Sequential 
feature selection is used in this research. It is one of the 
most widely used techniques. It selects a subset of features by 
sequentially forward search or removing until certain stopping 
conditions are satisfied. The results of sequential feature selection 

uncertainty is estimated with misclassification error (MCE), i.e. 
the number of misclassified observations divided by the number 
of observations. 

The quadratic discriminant analysis as the classification 
algorithm can be used if the number of observations in each group 
is big enough to estimate a covariance matrix. In the presented 
case the number of features (400) is much larger than the number 
of observations (155) for the training set. The largest permissible 
number of features for QDA is about 70. To handle the restriction, 
the first 70 most probable features from t-test statistic are used for 
the cross validation. The t-test statistic is used as a criterion for 
simple filter selection method.

The successive cross-validations with different feature sets 
from 1 to 70 are done to find out the relation of misclassification 
error to the number of features. Figure 8 depicts the relation for 
two ways of validation: holdout (new test observations) and 
resubstitution (the test and training observations). The MCE 
for the holdout validation decreases to 0.536 for 5 features and 

Figure 6 T-Statistic for features values (blue) and threshold for the null hypothesis (red)

Figure 7 Empirical cumulative probability of the null hypothesis

Figure 8 Results of two cross-validations with different feature sets
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the maximal values that makes them statistically insignificant. 
The secondary reason can be the close covariance of the 
features with already selected main features. A  big variance in 
the middle range frequencies has also a  technical reason: 
the different measurements are synchronised with acceleration 
maximal values that can cause some accidental transitions of the 
feature values between the neighbour features. The simple feature 
selection algorithm considers the transitions as error. There are 
different ways to cope with the problem. The simplest is the 
appropriate segmentations of the spectrogram. More advanced 
one is the feature transformation to a  new feature set with 
feature extraction. The better measurement synchronization with 
waveform similarity, such as proposed in [20], is also a promising 
technique to solve the problem.

From the technical viewpoint, differences in low frequency 
range correspond to some changes in the ballast layer. At the 
same time, the high frequencies correspond to changes in 
dynamic response of the wheel-rail contact.

for QDA are presented at Figure 9. The diagram shows that for 
the beginning with 12 features the minimal MCE 0.005 can be 
reached. The error is almost 10 times lower as for the simple filter 
approach due to selection of the best independent features.

The 12 selected features are depicted on the diagram of 
wavelet coefficients (Figure 10).

4.	 Conclusion and subsequent studies

The main aim of the actual research was to highlight the 
advantages of machine learning statistics vis-à-vis the simple 
statistical methods. The 12 found features within the sequential 
feature selection and quadratic discriminant analysis correspond 
to the most statistically significant frequencies and coordinates at 
wavelet diagram. The features have both low and high frequencies. 
Remarkably, there are almost no features corresponding to 
middle range frequencies where the amplitudes are the highest. 
The main statistical reason of the phenomena is big variance of 

Figure 9 Results of sequential feature selection for quadratic discriminant analysis

Figure 10 Features in the raster of 20 x 20 on the wavelet diagram with highlighted selection
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Nevertheless, the present study cannot explain the principal 
source of changes - they may be caused by changes in rail 
(common crossing) as well as the ones in the wheel. The three-
factor classification analysis should be carried out to separate the 
influence of each factor.
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