ФАЗОВЫЕ ТРАЕКТОРИИ В МОНИТОРИНГЕ ТЕХНИЧЕСКОГО СОСТОЯНИЯ И ИДЕНТИФИКАЦИИ МОДЕЛЕЙ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ

д.т.н., проф.. **Волкова В. Е** (Днепропетровский национальный университет железнодорожного транспорта имени академика В .Лазаряна)

1. Анализ существующих методов технического состояния элементов конструкций

Известные методы мониторинга технического состояния основаны на обнаружении повреждений в конструкциях зданий или сооружений в течение всего периода их эксплуатации. Методы, разработанные для обнаружения повреждений, могут быть классифицированы как частотные или временные [5-7,12]. Частотные методы обнаружения повреждений связывают возникающие дефекты с изменением жесткости конструкций. Эти методы используют конечноэлементные модели и линейные модальные параметры, такие, как собственные частоты и формы колебаний для идентификации повреждений, а в некоторых случаях, даже для определения местоположения повреждения. Модальные свойства, подобные собственным частотам форм колебаний конструкций, наблюдаются в неповрежденных конструкциях. Полагают, что если имеют место изменения в модальных параметрах конструкции в течение всего периода ее эксплуатации, то эти изменения связаны с возникновением повреждений. Эти методы успешно применяются для идентификации больших уровней повреждений в конструкциях, но они не способны установить момент возникновения повреждения. К тому же, по отношению к конструкциям зданий и сооружений окружающая среда или изменение режима эксплуатации могут также вызвать изменения в собственных частотах и формах колебаний, что затрудняет использование частотного метода в случаях возникновения значительных повреждений.

Временные алгоритмы основаны на вычислении определенных параметров через заранее установленный период времени. К этим параметрам относятся деформации (напряжения), прогиб конструкций, крен зданий, амплитуда колебаний, которые вычисляются и сравниваются с нормируемыми значениями. Нормируемые значения регламентированы в соответствующих строительных нормах.

Основным недостатком существующих методов [5-7,12], является то, что они применяют линейные динамические модели к анализу, как исходного объекта, так и объекта имеющего повреждения, что противоречит физической стороне процесса. Нелинейные эффекты, в данных методах усредняются и распределяются равномерно между параметрами отдельным мод.

Учет свойств реальной конструкции возможен лишь с определенной степенью приближения. В таких случаях одной из важных задач при создании математической модели несущей конструкции с использованием современных вычислительных комплексов является возможность ввода в модель параметров и свойств, позволяющих обосновать результаты натурных экспериментов.

2. Нелинейные модели динамических систем

Большинство механических систем проявляет нелинейные свойства при определенных параметрах внешнего возмущения. Нелинейность является общим свойством динамических систем [10, 11], а их линейное поведение - это исключение. В динамических системах, основными источниками нелинейности являются:

- геометрическая нелинейность, проявляющаяся (наблюдаемая) при значительных перемещениях исследуемой системы. Она является следствием нелинейности выражений потенциальной энергии. Примером таких систем являются гибкие стрежни, пологие арки, оболочки и тонкие пластинки;

- нелинейность по материалу, которая наблюдается при нелинейном законе зависимости между напряжениями и деформациями. Данный тип нелинейности часто встречается в задачах колебаний виброизоляторов, выполненных из полимерных материалов;
- нелинейность диссипативных характеристик. По существу диссипация энергии в механических системах является наименее изученным свойством. Модели вязкого трения являются весьма приближенным представлением физической действительности, и их применение часто вызвано удобством последующих вычислений. Удовлетворительное описание энергетических соотношений в диссипативных системах возможно только с помощью нелинейных моделей. Сухое трение, трение скольжения, гистерезисное трение, аэродинамическое сопротивление являются наиболее яркими примерами нелинейности диссипативных характеристик;
- конструктивная нелинейность, вызванная граничными условиями. Например, нелинейности упругих характеристик источником которых являются зазоры и податливость соединений, удары, возникающие при контакте с жесткими ограничителями;
- инерционная нелинейность, источником которой является нелинейность выражений кинетической энергии и которая отражается в появлении нелинейных членов, содержащих ускорения и (или) скорость, в уравнениях движения. Например, ускорения Кориолиса в уравнениях движения тел, относительно вращающейся оси .

Различие между линейными и нелинейными системами весьма существенно. Нелинейные системы могут демонстрировать сложное хаотическое поведение при действии внешнего гармонического возмущения, в то время как, реакция линейных систем всегда представляет собою периодический процесс на частоте внешнего возмущения. Нелинейные системы склонны к двум противоположным тенденциям, к хаотическому поведению и самоорганизации. Кроме того, даже слабо нелинейные системы могут проявлять чрезвычайно интересные и сложные явления, такие как перескоки, бифуркации, суб – и ультрагармонические колебания, предельные шиклы и хаос.

3. Графические представления колебательных процессов

Основным представлением колебательного процесса является его изображение в координатах y, t. Это объясняется прежде всего тем, что почти все приборы, регистрирующие колебания, такие как самописцы и осциллографы, воспроизводят данное изображение. Они выполняют запись колебаний либо на движущейся с постоянной скоростью полосе бумаги или пленки, либо на вращающемся барабане. Изображение в координатах y, t не только позволяет найти амплитуду, положение центра колебаний и спектральный состав, но и дает возможность судить о характере колебаний и их форме.

Для изображения гармонических колебаний применяют также их векторное представление в комплексной области. При его построении используют связь между синусоидальными колебаниями и равномерным вращением. С векторным представлением тесно связаны представление в фазовой плоскости и фигуры Лиссажу.

Изображение на фазовой плоскости «скорость- перемещение» более наглядно и особенно хорошо представляет негармонические колебания. Отдельная фазовая траектория отражает одно вполне определенное движение. Общее представление о всех возможных типах движений дает семейство фазовых траекторий, называемое фазовым портретом. Недостатком фазовых траекторий является невозможность непосредственного представления колебательного процесса во времени, но он компенсируется большим преимуществом: из геометрического представления фазовой траектории или семейства траекторий можно сделать важные заключения о свойствах колебаний. Это прежде всего относится к колебаниям, которые описываются нелинейными дифференциальными уравнениями. Для таких систем может оказаться, что единственно

возможным методом исследования является метод фазовой плоскости. Существуют также иные графические изображения для определения динамических свойств изучаемой системы.

2. Применение фазовых диаграмм к исследованию колебательных процессов

Качественное исследование поведения динамической системы сводится к изучению поведения траекторий в фазовом пространстве. Основы качественной теории исследования динамических процессов были созданы Пуанкаре. Исключительная роль в развитии качественных методов исследования динамических систем принадлежит А.А. Андронову [1], Е.А. Леонтовичу [1,2], И.И. Гордону, А.М. Ляпунову, Дж. Биркгофу. Основной задачей классической теории качественного исследования является определение динамических свойств систем без получения замкнутого аналитического решения. С этой целью широко использовались фазовые траектории на плоскости (y, \dot{y}) .

Наибольший интерес представляет фазовая траектория на плоскости (y, \ddot{y}) . Это связано с тем, что энергетические критерии на ней интерпретируются наиболее наглядно. Кроме того, зависимость $\ddot{y}(y)$ обратно симметрична относительно оси y графику изменения упругих свойств. Именно фазовые траектории $\ddot{y}(y)$ позволяют установить вид и уровень нелинейности системы. Известно, что ускорений точек более чувствительны к отклонениям колебаний от гармонических. Сопоставим линейную систему с нелинейной симметричной системой с двумя потенциальными ямами. Заметим, что при некоторых режимах колебаний на частоте возмущения осциллограммы этих систем подобны, а акселелограммы различны. Так, акселелограммы линейной системы имеют вид гармонического процесса, а несимметричной системы с двумя потенциальными ямами – пилообразный вид [4].

3. Средства идентификации временных процессов

В арсенале прикладного анализа дискретных временных процессов при решении задач идентификации находится огромное количество методов и алгоритмов. Многие из них, по сути, являются приложением или обобщением ранее разработанных на конкретную предметную область, поэтому целесообразно классифицировать их не по использованию в конкретных предметных областях, а по основным подходам к анализу временного ряда: статистический; спектральный; вейвлет; фрактальный; нелинейно-динамический и другие [5-7, 9,12].

Одной из важнейших проблем является оценка информации, заложенной во временном процессе. Необходимость обработки и распознавания графических представлений временных процессов в технике, производственном контроле, радиолокации, медицинской диагностике, астрономических и биологических исследованиях часто сталкиваются с необходимостью обработки зашумленных изображений. Основными источниками шума являются как процесс обработки временных процессов, так и процесс их получения. Работа датчиков зависит от их качества и от различных внешних факторов имеющих место в эксперименте. Диапазон шумов, встречающихся при обработке временных процессов, достаточно широк. Для подавления шумов существуют ряд методов предварительной обработки временных процессов. Однако в каждом отдельном случае, уровень оценивает специалист в области распознавания изображений в неавтоматизированном режиме. Очевидно, что идентификация шума требует от исследователя квалификации эксперта.

4. Применение фазовых траекторий к исследованию динамических процессов

Основы качественной теории исследования динамических процессов были созданы Пуанкаре. Предложенные им графики, на которых движение точки представляется некоторой траекторией на фазовой плоскости (y, \dot{y}) , широко используются для изучения автономных систем с одной степенью свободы. Структура фазовых траекторий (y, \dot{y}) позволяет судить о периодичности

динамических процессов и существовании особых точек, соответствующих устойчивым или неустойчивым положениям равновесия.

Область применения данных методов не ограничивалась задачами автономных колебаний. Фершингом в монографии [8] фазовые траектории на плоскости (y, \dot{y}) были использованы для нахождения периода аэроупругих колебаний пластины. Известны также попытки применить данные траектории в решении обратной задачи механики – идентификации. Так, в работе [5] автор, используя метод Шеффера, получил численные оценки диссипативных характеристик в отдельных точках фазовых пространства. В отличие от указанных выше работ, целью данного исследования является получение не численных оценок параметров диссипативных характеристик, а их обобщенного графического образа, который более удобен для последующей обработки.

Фазовое пространство динамических систем многомерно. Каждая его точка характеризуется не менее чем четырьмя координатами, а именно: перемещении, скоростью, ускорением и временем. Реальное пространство трехмерно. Оно более удобно для анализа. Рассмотрим фазовое пространство, ограниченное тремя координатными осями – перемещения, скорости и ускорения.

5 Отображения фазовых траекторий в расширенном пространстве

Предположим, что нам неизвестны функции, описывающие диссипативную и восстанавливающую силы. Первый вопрос состоит в том, чтобы установить линейна система или нет.

Обозначим $\Pi_k = \{y_k, \dot{y}_k, \ddot{y}_k\}$, $k = 1, \ldots, n$, множество точек, описывающих измеренные значения перемещений, скоростей и ускорений исследуемой системы в моменты времени $t_k = t_0 + kT$, где T — период внешнего возмущения. Если мы представим эти точки в расширенном фазовом пространстве (y, \dot{y}, \ddot{y}) , то получим набор точек, параметрически связанных по времени t_k (рис. 1).

Предположим, что ошибка измерений отсутствует, тогда

$$m\ddot{y}_k + H(\dot{y}_k, y_k) + R(y_k) = c$$
 для, (1)

где $c = F(t_0) = F(t_k)$ — постоянная величина для всех значений k .

Это означает, что все точки находятся на поверхности, которая может быть описана уравнением mw+h(u,v)+r(u)=0 в (u,v,w) -пространстве. Если функции, описывающие диссипативную и упругую характеристики механической системы $H(y,\dot{y})$ и R(y), линейны, то поверхность в расширенном фазовом пространстве вырождается в плоскость, т. е. все точки множества Π_k должны лежать на плоскости E. Тогда, существуют два действительных числа – a_1 и a_2 , такие, что все точки множества Π_k должны удовлетворять условию,

$$m\ddot{y}_k + a_1\dot{y} + a_3y = c$$
, $\Lambda \Pi R$ $k = 1, \dots, n$, (2)

которое является признаком линейности системы. Изменим амплитуду вынуждающей силы F(t) на $a_3 \, F(t)$, где действительное положительное число $a_3 > 0$, то соответствующее

множество результатов измерений $\Pi_k^{\ (a_3)}$ удовлетворяет условию $\Pi_k^{\ (a_3)} = a_3 \, \Pi_k$, что является вторым признаком линейности системы.

Конечно, на практике измерения имеют некоторую погрешность. Если существуют константы a_1 и a_2 , такие что все измеренные точки лежат на плоскости или в окрестности плоскости определяемой a_1 и a_2 и c, то мы можем сделать заключение о том, что система (1) линейная или слабо нелинейная.

6 Анализ экспериментальных записей временных процессов колебаний железобетонной балки

Проиллюстрируем применение фазовых траекторий и их отображений на примере обработки результатов экспериментального исследования динамического поведения мостовой балки. В эксперименте были определены частоты и формы колебаний моста в загруженном и разгруженном состоянии. Регистрирующая аппаратура фиксировала перемещения, напряжения, а также ускорения средней по длине балки точки нижнего пояса.

Из генеральной совокупности экспериментальных записей, были выделены временные процессы свободных колебаний и построены фазовые траектории и их отображения в расширенном фазовом пространстве (рис.1, 2).

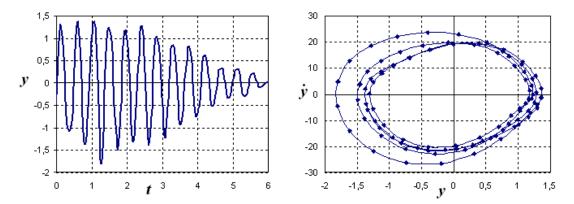


Рис.1. Экспериментальные записи временных процессов и фазовых траекторий Пуанкаре свободных колебаний железобетонной балки

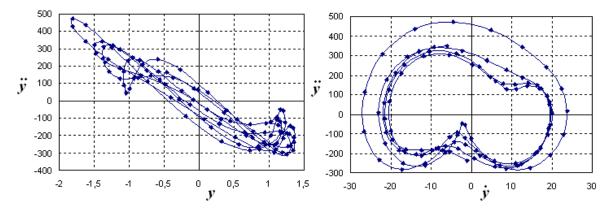


Рис. 2. Фазовые траектории колебаний железобетонной балки

Временные процессы свободных колебаний представляют собой затухающий процесс с незначительным вкладом высших гармоник. Длина петель фазовых траекторий и угол наклона

изменяются со временем. Фазовые траектории на плоскости (y,\ddot{y}) явно указывают на наличие нелинейной несимметричной характеристики упругой силы. Самопересечения на фазовых траекториях вызвано наличием гармоник порядка $\omega/3$ в записях временных процессов.

Для оценки параметров упругой характеристики автодорожного моста было использовано соотношение

$$r(\overline{y}_k) = c - m\overline{y}_k \quad t = t_k = k \quad T \tag{3}$$

T - где условный период затухающих колебаний.

Отображения фазовых траекторий на плоскости (y, \ddot{y}) (рис3.), позволяют отнести исследуемую систему к несимметричным системам с «мягкой» характеристикой упругой силы.

Рис. 3 Отображения фазовых траекторий на плоскости «ускорение – перемещение» колебаний балки.

Нелинейный характер упругой силы автодорожного моста объясняется наличием дефектов и повреждений пролетного строения. В частности, при колебаниях трещины мостового полотна попеременно открываются и закрываются, что приводит к изменению жесткости. Другим фактором, объясняющим несимметрию упругой характеристики, является наличие односторонних связей между стальными балками и мостовым полотном.

Литература

- 1. Андронов А. А., Леонтович Е. А., Гордон И. И., Майер А. Г. Качественная теория динамических систем второго порядка.— М.: Наука, 1966.
- 2. Баутин Н. Н., Леонтович Е. А. Методы и приемы качественного исследования динамических систем на плоскости.— М.: Наука, 1976.
- 3. Биркгоф Дж. Д. Динамические системы.— М.–Ижевск: НИЦ «Регулярная и хаотическая динамика», 2002. (переизд. 1941).
- 4. . Казакевич М. И., Волкова В. Е. Фазовые траектории нелинейных динамических систем. Атлас. – Днепропетровск: Наука и образование, 2002. – 94 с
- 5. Кононенко В. О., Плахтиенко Н П. Методы идентификации механических нелинейных колебательных систем— К.: Наук, думка, 1976. 114 с.
- 6. Меньшиков Ю.Л., Поляков Н.В. Идентификация внешних воздействий. Днепропетровск.: Наука и образование, 2009. 188с.

- 7. Никульчев Е. В. Геометрический подход к моделированию нелинейных систем по экспериментальным данным: М.: МГУП, 2007.— 162 с. ISBN 978-5-8122-0926-1
 - 8. Фершинг Г. Основы аэроупругости. М.: Машиностроение, 1984. 600 с.
- 9. Тихонов А. Л., Арсенин В. Я. Методы решения некорректных задач— М.: Наука, 1979. 285 с.
- 10. Kerschen G., Worden K., Vakakis A.F., Golinval J.-C., Past, present and future of nonlinear system identification in structural dynamics// Mechanical Systems. Signal Process.-vol. 20 (3)- 2006.-p 505–592.
- 11. Volkova V. E., Schneider K. Qualitative theory and identification of dynamic system with one degree of freedom // Прикладная механика. т 2005. Т. 41, № 6. С. 134–139.
- 12. Worden K., Tomlinson G.R. (2001) Nonlinearity in Structural Dynamics: Detection, Identification and Modelling.-New-York: Institute of Physics Publications, 2001 -678p.