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Abstract In this paper, an application of computer vision

and machine learning algorithms for common crossing frog

diagnostics is presented. The rolling surface fatigue of

frogs along the crossing lifecycle is analysed. The research

is based on information from high-resolution optical ima-

ges of the frog rolling surface and images from magnetic

particle inspection. Image processing methods are used to

pre-process the images and to detect the feature set that

corresponds to objects similar to surface cracks. Machine

learning methods are used for the analysis of crack images

from the beginning to the end of the crossing lifecycle.

Statistically significant crack features and their combina-

tions that depict the surface fatigue state are found. The

research result consists of the early prediction of rail con-

tact fatigue.

Keywords Railway turnout � Common crossing � Image

processing � Rolling contact fatigue � Machine learning �
Feature detection and selection

1 Introduction

Railway turnouts are high-asset and maintenance-intensive

parts of the railway superstructure. They are a limiting

factor in a reliable and cost-effective railway infrastructure

due to their short lifecycles and the difficulties in predicting

the remaining useful life of turnout elements [1]. Despite

significant advances in the application of various auto-

mated measurement and diagnostic systems [2, 3] in the

course of railway digitalization, the predictability of the

crossing lifetime is low. The reasons include not only a

large uncertainty of inertial measurements due to many

random influences [4] but also the complexity of degra-

dation processes [5].

Many different systems [6] are used for the inspection of

common crossing rolling surfaces: profile, surface scan and

video inspection, microstructure imaging, eddy current and

ultrasound, vehicle-based and track-based inertial mea-

surements (Fig. 1). However, none of the systems can yet

replace the conventional inspection method, which

includes expert judgement based on visual estimation and

acoustic perception of train impacts.

Profilometer methods deliver information on the longi-

tudinal wheel trajectory and cross section of common

crossings, which is simple to interpret. Their main draw-

back is that the measurement takes place in an unloaded

state. Surface scanning methods show similar limitations,

while at the same time, the additional measurement infor-

mation can also demand additional interpretation. The

German Railways (DB AG) tested laser surface scanning
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methods for common crossings at Scorpion and Lauros

(Fig. 2). Both methods depict the wear state of the rolling

surface, and the additional instantaneous high-resolution

imaging is considered.

The conventional methods for rail fatigue assessment

are eddy current and ultrasonic methods [9]. Both methods

can primarily be considered as fault-detection methods that

are not able to detect crack origination. Vehicle-based

inertial measurement, like the axle box ESAH-F mea-

surement system [3], which is installed on regular trains,

allows inspecting a big number of turnouts with low

expenses. The application of the system is limited to the

detection of existing faults or wear, without prediction of

common surface damages.

Magnetic particle inspection (MPI) is a reliable method

to detect surface features. However, it is a very time-con-

suming inspection method with a low degree of automati-

zation. High-resolution photo inspection (HRPI) would be

a promising alternative to MPI. It enables highly automa-

tized application in measuring cars as well as in easy

practical inspection with mobile devices. Figures 3 and 4

show MPI and HRPI images of a frog nose rolling surface

during its normal operation at 33 Mt and after rolling

surface fatigue damages at 52 Mt. The MPI image clearly

demonstrates a different MPI crack image pattern at 33 Mt

in zones corresponding to the fatigue fault at 52 Mt. Thus,

it can be considered a characteristic pattern of the future

fatigue zones. However, it is difficult to assess the

remaining useful life of the rolling surface, since the pat-

terns can appear long before the visible cracks.

The HRPI images, different to those of MPI, from the

first sight give no indication about the imminent surface

fault. However, experienced experts can clearly detect it

and consider that the HRPI images are not less informative

than the MPI images. The main problem of high-resolution

photo inspection is the difficulty of automatic crack

recognition in the early phase of their emergence. It is

therefore necessary to develop image processing methods

that are able to transform the HRPI images to images of a

form that corresponds to MPI images without substantial

loss of information.

Image processing and machine learning methods are

successfully used in civil and transportation engineering. A

dimensionality reduction method, like principal component

analysis, is used in the study [10] to assess the condition of

bridges using the data collected during visual inspections.

Fatigue fracture diagnostics of building structure elements,

including microhardness measurements and statistical

processing, are used in [11]. An evaluation of railway

ballast consolidation with discriminant and cluster analysis

is proposed in [12]. A histogram-based image segmentation

method, which is proposed in [13], is a promising tech-

nique for pre-processing HRPI images of the rail rolling

surface. Raster image processing methods are used in [14]

for the extraction of objects of interest from point clouds

and their automatic classification.

Fig. 1 Common crossing

inspection methods

Fig. 2 Surface scanning

methods for common crossings.

(left, Scorpion [7]; right, Lauros

[8])
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Deep learning pertaining to models is applied in [15] to

improve the automatized processing of crack images in

concrete structures. The approach of machine learning

predictive detection that is introduced in [16] could be used

to improve the predictive detection of rolling surface

degradation. A rail surface inspection method using deep

learning and image processing is proposed in the study

[17]. Paper [18] shows an approach for semi-supervised

rail defect detection with the aim of improving the per-

formance of squat detection. The authors of the study [19]

propose an improvement of head surface defect detection-

based video inspection and image processing methods. An

early detection of common crossing rolling contact faults

with vehicle-based inertial measurements and machine

learning methods is studied in [20]. A mechanical mod-

elling of short-term dynamic interaction and long-term

settlements of common crossing is presented in [21]. The

modelling results are compared with those of the on-board

inertial measurements. The results can be used to improve

common crossing lifecycle prediction.

The general feature of the reviewed studies of rolling

surface diagnostics is that most of them consider fault

detection in the late state of development without the

prediction of their following growth. The aims of the

present research are the objectification and automatization

of the conventional human visual inspections, as well as

discovering the possibilities for early prediction of rail

contact fatigue in common crossings.

2 Approach Description in General

The main part of the paper consists of the solution of the

following problem: detecting the feature changes in the

crack images that are statistically related to the frog life-

time. The problem is solved by using image processing and

statistical image analysis. A workflow diagram of the

present research is shown in Fig. 5.

The image processing and statistical image analysis is

based on data collected from one frog during its lifecycle.

The information consists of 5 MPI images of the frog’s

rolling surface after 13, 22, 33, 43 and 52 Mt. The image

processing and the following statistical analysis are based

on those MPI images. Additional information sources are

the HRPI images after 13, 33 and 52 Mt, which are used as

Fig. 3 MPI (above) and HRPI (below) images of the rolling surface on a frog nose after 33 Mt

Fig. 4 MPI (above) and HRPI (below) images of the rolling surface on a frog nose after 52 Mt
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independent information for the validation of the statistical

model.

3 Image Pre-processing and Feature Detection

To prepare the images for the feature detection, they are

initially improved with morphological image enhancement

techniques, which increase the signal-to-noise ratio of

images. The subsequent dilation and erosion operations are

used to remove small objects from an image and to smooth

the border of large objects [22].

The extraction of the meaningful information from the

improved images is carried out by using image analysis.

During the analysis, the independent image objects are

detected and their properties are measured. The following

table shows all used properties, providing a description of

the shape measurements and the used abbreviations

(Table 1).

The MPI images after the enhancement techniques still

show a big number of objects that are evidently not related

to crack images. The line-shaped objects are extracted as a

pre-processing step, using two simple conditions: the Ar

feature is limited within a minimal, and a maximal value

and the PAR feature is assumed to be more than 0.5. Fig-

ure 6 shows the MPI image, filtered using the two condi-

tions, with object colours corresponding to their values of

the PAR feature. A remarkable observation is that the

cracks with a big PAR feature, mostly belonging to small

cracks, are randomly distributed over the rolling surface.

Obviously, the PAR feature itself could not be considered

as a characteristic for the rolling surface state estimation.

4 Preliminary Statistical Analysis

The overall statistic of crack objects from 5 images during

the frog’s lifecycle contains 940 observations with 12

predictors and 5 classes of response variables. A prelimi-

nary statistical analysis is carried out to describe the gen-

eral properties of the statistics. The data are of different

dimensions, e.g. linear, angular or area measures, which

causes some difficulties while comparing different features.

To simplify the problem, all the data are reduced to undi-

mensional values or normalized. In their normalized state

the mean values of the features equal 1.

The second particularity of the data is a very big

asymmetrical variability. Figure 7 with boxplots for all 12

features shows that most of them have a variability inside

the upper and lower quartiles, which is comparable with

their median value. The Orn (Angle between the x-axis and

the major axis of the ellipse) feature, that corresponds to

the crack orientation, has much bigger variability due to

positive and negative values.

Fig. 5 Workflow diagram of image processing and statistical image

analysis

Table 1 The measured

properties and their

abbreviations

Abbr. Description

Ar Area or number of pixels in the region

MajAxLn Length in pixels of the major axis of the ellipse that approximates the region

MinAxLn Length in pixels of the minor axis of the ellipse that approximates the region

Orn Angle between the x-axis and the major axis of the ellipse

ConvAr Number of pixels in convex image, with all pixels within the hull filled

FilAr Area or number of pixels in the region without internal regions

EN Number of objects in the region minus the number of holes in those objects

EqDm Diameter of a circle with the same area as the region

Sol Proportion of the pixels in the convex hull that are also in the region

Ext Ratio of pixels in the region to pixels in the total bounding box

Per Perimeter or distance in pixels around the boundary of the region

PAR Perimeter to area relation
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The mean values of the features depending on the ton-

nage are depicted in Fig. 8. The trend of the mean values is

rather random and ambivalent.

Figure 9 shows the variability of the data along the

frog’s lifecycle. Many features show very similar values,

which means that they do not carry new information and

therefore could be supposed redundant. The diagrams show

no evident relation of the measured features to the frog’s

lifetime.

Fig. 6 Image objects with their PAR features (43 Mt)

Fig. 7 Box plots of features for

image objects

Fig. 8 The trend of the feature mean values

Fig. 9 Normalised feature values of image objects
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5 Principal Component Analysis and Feature
Selection

To reveal the relations between the features that are still

hidden in the Figs. 8 and 9, the principal component

analysis (PCA) is used. PCA is mostly used as a means of

exploratory data analysis and for making predictive models

[23, 24]. It helps to reveal the internal structure of the data

in a way that best explains the variance in the data. The

sense of the PCA consists of replacing a group of variables

with a single new variable, called principal components.

Each principal component is a linear combination of the

original variables. All the principal components are

orthogonal to each other, so there is no redundant infor-

mation [25]:

zi1 ¼ u11xi1 þ u21xi2 þ � � � þ up1xip

here: zi1 are the scores, and u11; . . .;up1 is the loadings of

the first principal component.

The following pareto diagram (Fig. 10) shows the first 6

components that explain 95% of the total variance. The

first component explains a bigger share of the variance than

all other components together.

However, Fig. 10 cannot explain the reason for the

variance. The particularity of PCA is that it is an unsu-

pervised approach, since it involves only a set of features.

To find out what component corresponds to the response

variable, i.e. the frog’s lifetime, the scatter plot of data in

the coordinates of the first two components is built

(Fig. 11). Together with this, a biplot is depicted that

allows visualization of the magnitude and sign of each

feature’s contribution to the first two components. The first

principal component, on the horizontal axis, is strongly

influenced by the features Ar, Per, ConvAr, EqDm and less

strong by MinAxLn, MajAxLn, all of them in a positive

direction. The second principal component, on the vertical

axis, has positive coefficients for the PAR end EN features

and negative for Ext, Sol and Orn. The different lifetime is

depicted using different colours from red to blue. Appar-

ently, more blue points with a tonnage of 43 and 52 Mt are

concentrated in the positive direction of the second com-

ponent. Although the first component has four times bigger

weight than the second, it has no relation to the frog’s

lifetime.

The PCA shows that many of the 12 features are

redundant. To select the meaningful features for the first

two components, their weights are plotted for each feature

(Fig. 12). The Pc1 has the following four most meaningful

features and weights: Ar(0.21), ConvAr(0.94), FilAr(0.22)

and Per(0.13). The Pc2 has the following: Ar(0.60),

MajAxLn(0.11), ConvAr(0.33), FilAr(0.61) and Per(0.36).

Both Pc1 and Pc2 are influenced by a similar range of

features: Ar, MajAxLn, FilAr and Per. The only difference

between Pc1 and Pc2 consists in the feature ConvAr, which

for Pc2, has a negative value. The relation of the mean

values of Pc1 and Pc2 with the selected features to the

frog’s lifetime is shown in Fig. 13. The shown Pc values

are not normalised, but the beginning values are reduced to

0 for a convenient visualisation. Figure 13 shows the

monotonous relation of Pc2 to the frog’s lifetime. Although

Pc1 has a much bigger weight than Pc2, it cannot provide

an unambiguous relation to the lifetime. The variance of

the Pc2 value could be explained by differences in the

image acquisition due to the MPI technique, such as con-

trast, brightness of illumination, etc.

The main advantage of PCA is that it provides an easy

interpretable indicator that demonstrates systematic varia-

tion versus crossing lifetime and takes into account the

Fig. 10 The pareto diagram of

total variance explained with

PCA components
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main significant features. The disadvantage is that the PCA

is an unsupervised learning approach that does not take into

account response variable. Therefore, the relation of the

principal components to the crossing lifetime is determined

after the analysis. Other supervised linear techniques,

like partial least square regression or lasso regularisation

[24, 25], could provide additional improvements.

6 Validation of the Method

The discovered relation of Pc2 to the tonnage only indi-

cates some systematic changes in the form of MPI cracks

during the crossing’s lifetime. It should be verified if the

changes also have a relation to the faults observed on the

rolling surface. The validation of the developed statistical

method is performed using an independent information

source—the available HRPI images. The problem of the

Fig. 11 The first two principal

components and feature vectors

Fig. 12 The features and

weights of Pc1 and Pc2

Fig. 13 The mean Pc1 and Pc2

values versus the frog’s lifetime
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validation using MPI images is that the crack images dis-

appear as soon as the visual fault occurs. Therefore, the last

MPI images before the fault occurrence are used for the

validation. Figure 14 (above) shows the MPI image with

crack ranking according to the Pc2 criterion for a lifetime

of 43 Mt. Cracks that are most likely to cause surface faults

are coloured red. Figure 14 (below) shows the HRPI image

of the same part of the rolling surface at 52 Mt—after the

first damages have appeared. Two prominent groups of

cracks are found in the Fig. 14 (below): the right group has

grown to a surface damage at 52 Mt, the left shows an

evident initiation of damage. Serious damage could be

expected within the next 10 Mt.

7 Prediction of Remaining Useful Life Based
on the Inspected Principal Component Value

To determine the statistically significant relation of Pc2 to

the lifetime, a regression analysis is carried out. The

regression diagram (Fig. 15) depicts the data points in Pc2

form, and a polynomial fit with the 95% function confi-

dence bounds. The HRPI image for 52-Mt inspection

shows a frog surface fault (zone highlighted in red in

Fig. 15).

To reveal the possibilities of the remaining life predic-

tion, the following considerations are taken into account

(Fig. 16). The inspection delivers a principal component

(PC) value at some inspection time BR;0. The intersection

of the value with confidence bounds delivers BR;min and

BR;max. The estimation error of the remaining useful life

can be determined with the three values as well as the fault

prediction horizon.

The first indication in crack features on the future crack

development can be found already on 33-Mt MPI images.

However, due to the prognosis error, a prediction earlier

than 38 Mt (Fig. 15) is not possible. The beginning of

visual rail surface faults is also difficult to be determined

exactly due to relatively infrequent inspections. Therefore,

it could be supposed that the significant fault could have

appeared approximately in the middle between the two

neighbouring inspections at 43 and 52 Mt. Therefore, the

prediction of the fault is possible within a prediction

horizon of not more than 11 Mt.

8 Conclusion and Subsequent Studies

The investigation of MPI images of the rolling surface on a

crossing nose during a frog’s lifecycle has shown that they

have a significant statistical relation to the frog’s lifetime.

The relation is however not evident for simple statistical

estimation due to the strong influence of random factors.

The application of PCA helps to select the meaningful

features carrying information about the fatigue state of the

rolling surface. The method validation, using new inde-

pendent data, shows that the method is able to find the

cracks that lead to the surface damages. The regression

analysis shows that by using surface crack images it is

possible to detect the state changes and forecast the rolling

surface damages within a prediction horizon of up to

11 Mt.

However, the presented method also has some draw-

backs that could be considered as problems for subsequent

studies. The major practical problem is the application of

the time-consuming MPI imaging inspection method for

railway infrastructure with a low degree of automatization.

Fig. 14 The predicted faults with MPI imaging at 43 Mt (above) and appeared faults after 52 Mt (below)
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The HRPI inspection method could be used as alternative

method, but its application raises the problem of image

processing. The problem could be solved using deep

learning image processing methods.

Another way to extend the prediction horizon exists in

the improvement of statistical information. The main

problem here is that the number of cracks that leads to the

damages is relative to the general statistics. The problem

could be solved in two ways: either by increasing the

statistics with new information, or by performing a quali-

tative improvement of the existing information. New fea-

ture measures could be used to describe the internal

properties of the crack objects.
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13. Storcz T, Ercsey Z, Várady G (2018) Histogram based segmen-

tation of shadowed leaf images. Pollack Period 13(1):22–32.

https://doi.org/10.1556/606.2018.13.1.2

14. Hůlková M, Pavelka K, Matoušková E (2018) Automatic clas-

sification of point clouds for highway documentation. Acta

Polytech 58(3):165–170

15. Shi Y, Cui L, Qi Z, Meng F, Chen Z (2016) Automatic road crack

detection using random structured forests. IEEE Trans Intell

Transp Syst 17(12):3434–3445. https://doi.org/10.1109/tits.2016.

2552248

16. Bolkeny I, Fuvesi V (2018) Ai based predictive detection system.

Pollack Period 13(2):137–146. https://doi.org/10.1556/606.2018.

13.2.14
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