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Abstract. The structure, phase composition, hardness, and elasticity modulus of sintered 

Fe–Cu–Ni–Sn–CrB2 composites and their tribological properties under dry and wet friction have 

been studied by X-ray diffraction, scanning electron microscopy, microindentation, and tribological 

testing. The obtained results have demonstrated that the microstructure and mechanical and 

tribological properties of these composites depend on the CrB2 additive content. The Fe–Cu–Ni–

Sn–CrB2 composites incorporate the α-Fe, γ-Fe, and Cu phases and a certain fraction of the 

crystalline Cu9NiSn3, NiSn3, and CrB2 phases. The hardness and elasticity modulus of these 

composites are almost independent of the friction medium (dry or wet), and the friction force and 



the wear rate are variable. The Fe–Cu–Ni–Sn–CrB2 composites are superior to the Fe–Cu–Ni–Sn 

composites in their mechanical and tribological properties. The addition of 2 wt % of CrB2 to the 

51Fe–32Cu–9Ni–8Sn composite has decreased the friction force from 220 to 170 mN and the wear 

rate from 7.41 × 10–2 to 3.41 × 10–2 mm3/(N m) under dry friction and, respectively, from 200 to 

140 mN and from 8.19 × 10–2 to 4.10 × 10–2 mm3/(N m) under wet friction. A further growth in 

the CrB2 content in the composites leads to an increase in the wear rate. The mechanism of increase 

in the wear resistance of the composite containing 2 wt % of CrB2 as compared to the initial 

composite implies the formation of a more fine-grained structure with an optimal combination of 

the hardness and elasticity modulus. The Fe–Cu–Ni–Sn–CrB2 composites can be used as a material 

for the matrix of composite diamond-containing materials subjected to strong wear. 
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