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BRIEF COMMUNICATIONS

SHARP ESTIMATES FOR THE BEST APPROXIMATIONS OF SMOOTH
FUNCTIONS IN C2⇡ IN TERMS OF LINEAR COMBINATIONS OF
THE MODULES OF CONTINUITY OF THEIR DERIVATIVES
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For the best approximations of en−1(f) functions in C1
2⇡ by trigonometric polynomials, V. Zhuk proved
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Let C[−⇡,⇡] be the space of real-valued continuous 2⇡-periodic functions with the norm

kfk = max{|f(x)|;x 2 R1},

let

en−1(f) = inf

{ck}

8
<

:

������
f(x)−

n−1X

k=−(n−1)

cke
ikx

������
; c−k = ck

9
=

;

be the best approximation of f by a subspace of trigonometric polynomials {Tn−1} of degree at most n − 1,

n 2 N , and let
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be the module of continuity of f.
In order to find the upper bound for the quantity en−1(f) via the values of the module of continuity of f, it is

customary to use the Jackson–Korneichuk inequality {see [1, 2] (Sec. 9.2)}
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For all n 2 N, this inequality is unimprovable. More exactly, for all n 2 N, we have
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