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Abstract: The ability to assess the risks of the functional safety of railway tracks allows harmonizing 

characteristics of track elements under certain operating conditions under certain maintenance for 

the efficient use of the track structure throughout its life cycle. The concept of detailing conditions 

of the interaction of the rolling stock and railway track was used for the productive solution of tasks 

of infrastructure functional safety assessment. The paper formed an approach to the analytical 

solution of determination problems of deformability parameters over time using the elastic waves 

theory. The formation method of interconnections between the technical and economic aspects of 

the operation of railway infrastructure was proposed. The criteria of deformability work and 

intensity of use were utilized for the effective use of the track structure through its life cycle. The 

results of calculations are presented to assess changes in the deformability behaviour of the track 

elements and structure when the force and speed parameters of the operating conditions change, as 

well as the algorithm of the method for estimating the operation deformability of the railway track. 

Thus, the proposed approach can be adapted to optimize objects by railway functional safety 

assessment at the stage of object operation simulation. 
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1. Introduction 

The technological development of humanity is faced with the need to provide an 

innovative and effective tool for productively solving the issues of ensuring the reliability, 

availability [1], maintainability [2–5], and safety of railway systems [6,7]. 

In the future, the way in which people inform themselves, choose, and purchase 

goods and services online is expected to change continuously: 

­ Increased connections with mobile devices through high-capacity 

telecommunication networks (5G, etc.) [8–10]; 

­ Increased use of multimodal integration platforms in mobility-as-a-service mode 

[11,12]; 

­ Growth of online commerce, with consequent stress on the logistics system and an 

increase in the number of delivery vehicles in cities [13–15]. 

In the face of these important transformations, a strategy of change must be adopted 

to revitalize and develop various countries [16–18]. Rail transport, in particular, can make 

a major contribution. 

By improving sustainable [19–21] rail-based mobility, the share of travel with high 

environmental performance [22–24], such as rail transport, collective road transport 

[25,26], or shared systems, can make a significant contribution to reducing the many 

negative impacts [27–30], such as pollutant emissions [31] and climate impacts [32–35]. 
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Energy efficiency, renewable energies, redesign of production cycles, and a modal 

shift towards environmentally friendly [36] means of transport are necessary measures 

for the transport sector [37–41]. In terms of energy and emissions, rail transport is among 

the most energy-efficient and lowest-emission transport systems. 

The risk assessment of the functional safety [42–46] of any engineering object is 

associated with the definition of reliability [47–49], availability, maintainability, and safety 

(RAMS) [50,51]. It determines the suitability of objects to perform their functions safely 

(with defined risk levels at all stages of the life cycle) [25,52,53] and efficiently (with a 

certain level of costs) under specific operating conditions [54–57]. This state is assessed by 

deformability. 

However, modern tools used to determine the state of an object are based on 

principles developed to determine the first limit state, which determines the general 

suitability of an object to work in certain conditions [58–60]. The strength [61–63] and 

stability [64–67] indicators used to evaluate this state are obtained by numerical modeling 

to simulate quasi-dynamic deformation processes [68–71] occurring inside the elements 

under the influence of external [72–74] and climatic impulses [75–77]. 

In the numerical simulation [78,79], the conditions are simulated to obtain a relevant 

result. However, to assess risks, it is necessary to employ analytical methods, using time-

space dependencies [80–83] to model the processes both within elements of the structure 

and in the track structure as a whole. 

Existing engineering approaches only solve 3% of the tasks by analytical methods, 

and the remaining 97% are solved by choosing individual solutions based on experimental 

data obtained for certain operating conditions [84,85]. The following time characteristics 

are not taken into account for existing computing systems: 

­ Change of force impulses over time; 

­ Changes in the deformability process over time. 

The lack of time parameters in the calculations makes it impossible to link the original 

causes with the symptoms identified as the result. 

The solution to this issue is, firstly, the formation of an approach to analytical 

problem solving of determining the parameters of deformability in time using the elastic 

waves theory [50]. Secondly, the formation of relationships between the technical and 

economic aspects of the operation of railway infrastructure facilities. 

This paper aims to demonstrate that the concept of detailing the conditions for the 

interaction of rolling stock and the railway track makes it possible to expand the 

possibilities of simulating and diagnosing natural phenomena necessary for productively 

solving the issues of railway functional safety assessment. 

2. Research Methods 

Determining the conditions for reliable operation of the crew-railway system 

involves identifying in the mechanism of the system operation all intermediate events 

(components) in the chain of cause-and-effect relationships that will lead from immediate 

causes to final consequences. The disclosure of the mechanisms of the physical essence of 

the destruction of the railway track, firstly, allows determining the necessary control 

criteria for the railway track, evaluating the state of the track according to reliability 

criteria, predicting the operation of the track for different periods, and determining the 

optimal work for its restoration. Secondly, to ensure that the reliable operation of the crew 

system is the way to establish the criteria for monitoring this system, classify its state of 

reliability and predict its behaviour. 

Modeling the life cycle of the deformability work of the railway track involves 

considering the problem in a stochastic formulation because the use of numerical methods 

does not allow describing the change in rail deformations under the influence of rolling 

stock wheels over time. However, the basis of the modeling used in the work is the 

presence of wave processes caused by both external and internal vibrations of the track 
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structure elements [50,80]. Thus, the variability of the problem statement is reduced by 

establishing a pattern between the magnitude of the impact and the processes of vibration 

of the track structure over time for specific operating conditions. To apply this method, a 

mathematical model of the operation of the railway track structure has been developed, 

taking into account the spatial propagation of elastic waves during the interaction of the 

track and rolling stock. This model combines three blocks: the mechanism of the rolling 

stock impact on the track, the propagation of a force wave in the elements of the track 

structure, and the transition of a force wave from one element to another. The calculation 

algorithm for the developed model is as follows: 

     ,...,,,,...,,,,...,,, 212121 iiiF bbbaaaL 
 

 ,,, FVLfP FF   
  ,...,,, 21 itttT 

 
   ,...,,,,...,,, 2121 ii sssK 

 
   ,...,,,,...,,, 211211 ijiijii ggg 

 
   ,...,,,,...,,, 12111211 smplA BBBAAAF 

 
  ,...,,, 1211 ikyyyY 

 

        , , , , , , ,F F A F A i F FS f K P F R f K F K Y f P R T       

(1) 

where , , ,F i i iL a b   are the trajectory of the wheels, the length and width of the contact 

area, and the gap between the wheel and the rail at the moment of contact, respectively; 

, , , , , , ,F i A FV F P Т F R Y  are the loads, speeds of movement, load impulse 

parameters, time, track elements, force waves by direction, reaction waves by direction, 

and deformation states of the model, respectively; 
, , , , , ,i ij ij p sm ikK s g A B y

 are the assembly of track elements, connections between 

elements, j  element of the set of geometric dimensions and physical and mechanical 

properties of the element i , , m  element of the set of parameters of propagation of 

longitudinal and transverse waves by direction, and k  element of deformation states 

element i , respectively. 

The principle of assembling geometric models for the proposed simulation is similar 

to the assembly of geometric models when applying the finite element method. Geometric 

models can be built in any software. The geometry of the parts complies with current 

regulations and design. 

According to the physical characteristics of the materials of the elements, the 

propagation velocities of the longitudinal and transverse waves in each element along the 

directions of propagation are determined. 

On the geometric model of the track structure, the coordinates of the trajectory of the 

wheels of the rolling stock are determined. These coordinates are decisive for the 

construction of local coordinate systems, in which the propagation of impulses applied 

along the rail at a certain point in time is considered as an excitation factor. The geometric 

arrangement of local coordinates is determined by the direction of the force acting at a 

certain point from the rolling stock on the rail, while maintaining the perpendicularity of 

the angles of application of the force to the outline of the rail head. The magnitude of the 

forces acting on the path is determined by existing methods [86]. The time of action of the 

force is determined by the ratio of the length of the contact area of the wheel with the rail 

to the speed of the rolling stock. For the proposed model, the geometric parameters that 

describe the physical process of force wave propagation in the elements of the track 

structure are the main ones, as their superposition in time characterizes the vibration 

process. The vibrational process itself is a superposition of spherical and quasi-spherical 

waves of incidence-reflection-refraction in time at each point of the object. Wave 

propagation is represented as vectors propagating from the wheel/rail contact, taking into 
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account the direction of wave propagation and the direction of displacements relative to 

the direction of propagation. Therefore, the displacements caused by the impulse and 

carried by longitudinal waves are realized in the direction of propagation, and by the 

transverse wave in the direction perpendicular to the direction of propagation in time. In 

addition to the direction of the displacement caused by the impulse, the wave propagation 

velocity is taken into account because the propagation velocity of longitudinal waves is 

higher than the propagation velocity of transverse waves. 

The existing track infrastructure maintenance systems are based on the geometric 

and elastic characteristics to determine the technical states of both the elements and the 

track structure for various operating conditions [59,81,85]. Therefore, they can be used to 

determine such criteria of deformability as deformability work iA  (work to move an 

object under the action of a force impulse in time) and intensity of use iI  (the ratio of the 

amount of work to the time of the force action) 

2

1

t

i

t

A P ydt  , (2) 

where P  is the force that affects the element , and y is the 
shift caused by the force 

during the action 
 1, 2t t

. 

i
i

A
I

t
 , (3) 

where t  is the force exposure time. 

Questions on the assessment of functional safety during the life cycle are effectively 

relevant [87,88]. However, in solving them, the time indicator is used as the interval of 

time during which the process under consideration takes place. Using the elastic wave 

theory allows describing cyclic dynamic processes by two types of frequencies: frequency 

of impulse, characterized by the time of direct action, and frequency of repetition, 

characterized by the time between impulses. Such divisions do not exist when solving 

problems using the theory of elasticity. Hence, when studying the influence of both the 

impulse itself [89–93] and its repetition [94–97], as well as in modeling and validation [98–

100], it is considered as a formed oscillation process. The theory of propagation of elastic 

waves allows directly forming this process, using the property of all types of waves to 

transfer momentum without change to all points in space, taking into account both the 

time the force field reaches each element of the railway structure and the absorption of 

each element of the force impact during the collision of waves. This allows studying the 

influence of both the impulse itself and its repetition separately and makes it possible to 

establish the relationships between the technical conditions of the elements and the 

structure of the railway track, the operating conditions, and the maintenance system 

during the life cycle. 

3. Research Results 

For a productive solution to the problems of the railway functional safety assessment, 

the concept of detailing the interaction process of rolling stock/railway track was used. 

Detailing was carried out in two directions. 

In the first direction, the process of describing the dynamics of the deformability of 

the elements and the structure of the railway track under the influence of the rolling stock 

was detailed in two blocks: (1) impact, (2) transfer and transformation of impact. 

The second direction of detailing is the introduction of deformability criteria for the 

formation of relationships between the techno-economic aspects of the operation of 

railway infrastructure facilities. 

3.1. The First Direction of Detailing 
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Detailing the “impact” block led to the following results: 

1. Since energy exchange occurs during the impact, one of its characteristics is the law 

of change of the acting physical quantity over time. This value characterizes the 

intensity of the impact of the force impulse and allows describing such characteristics 

of the impact as “legato” and “staccato” in music or “soft” and “hard/sharp” in 

mechanical systems. 

The speed of transfer of the external impulse inside the elements remains constant 

because it depends on the characteristics of the materials, which means that the speed of 

propagation of the internal force is constant. Changing the speed of the rolling stock leads 

to a change in the contact time of the wheels and rails in one cross section, which leads to 

a change in the rate of deformability at each point of the elements. Therefore, at the same 

speed of propagation of force fields inside any element of the track structure, a change in 

the speed of the rolling stock leads to a change in the intensity of the impact on each point 

of the track structure element. Thus, an increase in the speed of the train leads to the effect 

“staccato” in music or “hard/sharp” impact in mechanical systems. The lower the speed 

of movement, the greater the effect of “legato” in music or “soft” impact in mechanical 

systems. 

2. The action of a constant force per unit time on an object, regardless of the time of its 

impact, is characterized by the same value of the amount of motion per unit time, 

which serves as a potential for performing the same amount of work of the object per 

unit time. This means that it transfers the same amount of energy per unit time during 

the action of the force. If the force has a variable value in time, then the impulses of 

the variable forces cause the exchange of a variable amount of energy per unit time 

during the duration of the force. 

The detailing of the “transfer and transformation of impact” block made it possible 

to assess the probability of fatigue and defects under certain operating conditions, 

depending on the design and material characteristics of the rail structure elements. The 

collision of waves of incidence and reflection results in a concentration of deformation 

within the elements, as well as heat production in proportion to the amount of 

deformation not realized in each direction. 

Using the elastic waves theory allows establishing: (a) the deformability of elements 

over time; (b) the time ratio of the impulse impact and its propagation along the length 

and depth of the track structure; (c) the change in the amount of energy in any point of 

the structure in time. The above-mentioned parameters allow changing the deformability 

processes. The following are the results of calculations that allow determining and 

comparing the processes of deformability within the elements and track structure when 

exposed to rolling stock with different speeds and loads. 

The investigation is carried out for the track structure model consisting of the 

following elements: rails R65, concrete sleepers SB3, fastenings KPP-5-К, ballast stone of 

0.4 m thick, subgrade. Their characteristics are given in Table 1. 

Table 1. The properties of track structure elements. 

Element Density, kg/m3 
Poisson’s 

Coefficient 

Young’s Module Е, 

МPa 
Cl, m/s 1 Ct, m/s 2 

Rail 7830 0.24 2.1 × 105 5622 3288 

Pad 918 0.3 100 382 204 

Sleeper 2200 0.1 36,000 4090 2727 

Ballast 1900 0.2 100 241 148 

Ground base 170 0.3 30 487 260 
1—the speed of longitudinal; 2—the speed of transverse waves in the material. 
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The rolling stock influence on the track was considered with respect to the central 

position of the wheel set. As a result of the investigation, Figure 1 demonstrates the 

dependence of oscillation amplitudes of the track structure section over time with a 

motion speed of 80 km/h under the single force impact of the section’s different loads. 

Table 2 and Figures 1–7 show the ratios demonstrating the change in the values of the 

impact force and the speed of movement on the work of deformability and the intensity 

of the use of track and structure elements relative to the values when exposed to a load of 

F = 225 kN and V = 80 km/h. 

 

Figure 1. The dependence of oscillation amplitudes of the track structure section over time with a 

motion speed of 80 km/h under the single force impact of the section’s different loads. 

The complex dependence of the oscillation amplitudes, shown in Figure 1, 

demonstrates a non-uniform change in both the amplitudes and frequencies of the 

oscillations in the deformability process of the track structure section under the action of 

a force load. This is the result of the superposition of waves as they propagate along the 

track structure. 

Table 2. Force and deformability behaviour ratios at various motion speeds. 

Force Ratios at Different Speeds Fi/F = 225 kN and V = 80 km/h 

 

F = 225 kN F = 294 kN F = 450 kN 

V = 50 

km/h 

V = 80 

km/h 

V = 110 

km/h 

V = 50 

km/h 

V = 80 

km/h 

V = 110 

km/h 

V = 50 

km/h 

V = 80 

km/h 

V = 110 

km/h 

0.896 1.000 1.110 1.205 1.341 1.491 1.838 2.054 2.279 

 Deformability work Ai/A = 225 kN and V = 80 km/h 

Object 

F = 225 kN F = 294 kN F = 450 kN 

V = 50 

km/h 

V = 80 

km/h 

V = 110 

km/h 

V = 50 

km/h 

V = 80 

km/h 

V = 110 

km/h 

V = 50 

km/h 

V = 80 

km/h 

V = 110 

km/h 

Track structure 1.212 1.000 0.770 2.855 2.371 2.021 9.401 7.522 7.081 

Pad 0.873 1.000 1.205 1.791 2.024 2.422 5.048 5.692 6.597 

Sleeper 1.244 1.000 0.907 2.760 2.188 2.018 8.539 6.799 6.306 

Ballast 1.199 1.000 0.706 2.874 2.513 2.014 9.776 8.249 7.641 

Ground base 1.246 1.000 0.932 2.933 2.200 2.038 9.041 6.847 6.364 

 Intensity of use Ii/I = 225 kN and V = 80 km/h 
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Object 

F = 225 kN F = 294 kN F = 450 kN 

V = 50 

km/h 

V = 80 

km/h 

V = 110 

km/h 

V = 50 

km/h 

V = 80 

km/h 

V = 110 

km/h 

V = 50 

km/h 

V = 80 

km/h 

V = 110 

km/h 

Track structure 0.786 1.000 1.022 1.677 2.150 2.432 4.796 5.918 7.394 

Pad 0.566 1.000 1.601 1.052 1.836 2.915 2.575 4.478 6.889 

Sleeper 0.807 1.000 1.205 1.621 1.984 2.429 4.356 5.349 6.585 

Ballast 0.777 1.000 0.938 1.688 2.279 2.424 4.988 6.490 7.979 

Ground base 0.808 1.000 1.238 1.723 1.995 2.453 4.613 5.387 6.646 

 

Figure 2. Ratio of deformability work and intensity of use for section of track construction under 

different axle loads and speed of rolling stock. 

Figure 2 shows an increase in both the work that the track structure performs in the 

process of deformability and the intensity of use of the structure with an increase in axial 

load. At the same time, an increase in the speed of the rolling stock causes an increase in 

the intensity of the use of the track structure, but there is a decrease in the amount of work 

to accomplish the deformability process. This is explained by the fact that an increase in 

the speed of the rolling stock reduces the contact time of the wheel with the rail during 

their interaction, which increases the frequency of both the impact of the rolling stock and 

the vibration of the track structure. However, the speed gradient exceeds the force 

pressure gradient, which leads to an increase in the length of the track section, perceiving 

rolling stock loads. 

 

Figure 3. Ratio of deformability work and intensity of use for pad under different axle loads and 

speed of rolling stock. 
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The ratios presented in Figure 3 show that both an increase in axial loads and an 

increase in travel speeds lead to an intensification in the operating mode of the pad. 

 

Figure 4. Ratio of deformability work and intensity of use for sleeper under different axle loads and 

speed of rolling stock. 

Figure 4 shows that an increase in axial loads and speed of the rolling stock increases 

the intensity of the use of sleepers, but at a lower cost of work of the sleepers for 

deformability. 

 

Figure 5. Ratio of deformability work and intensity of use for ballast under different axle loads and 

speed of rolling stock. 

The ratios presented in Figure 5 show that an increase in axial loads and speed of the 

rolling stock increases the intensity of the use of ballast, but at a lower cost of amount of 

work of the ballast for deformability. 
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Figure 6. Ratio of deformability work and intensity of use for ground base under different axle loads 

and speed of rolling stock. 

Figure 6 shows that an increase in axial loads and speed of the rolling stock increases 

the intensity of the use of ground base, but at a lower cost of work of the ground base for 

deformability. 

 

Figure 7. Ratio of intensity of use for railway track structure and its elements under different axle 

loads and speed of rolling stock. 

The ratios shown in Figure 7 help to determine the general trends in the change in 

the intensity of the use of elements and the railway track structure under the influence of 

rolling stock with various speeds and axial load, as well as the particular conditions that 

distinguish elements that perceive the load more intensively. For example, at a speed of 

110 km/h, the pads wear out more intensively, regardless of the axle load. This is due to 

the fact that the behaviour of the pad with the accepted geometric, physical, and 

mechanical characteristics resonates with the frequency of the load application, that is, 

when the rolling stock passes at the specified speed. The above ratios also demonstrate 

the involvement of the ballast in the intensive vibration process, with the accepted 

geometric and physical-mechanical characteristics, with an increase in the axial load. 

The proposed detailing allows establishing the interdependences of the rolling stock 

dynamics and the intensity of using the railway track elements. The use of the proposed 

evaluation parameters of deformability behaviour will further allow defining the effect of 
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the aggregate change in the states of elements on the track structure operation and, in 

compliance with the current requirements for the track structure and its maintenance, to 

form the set of evaluation data of the track state in terms of acceptable deviations in the 

track elements. 

3.2. The Second Direction of Detailing 

One of the main factors in the impossibility of ensuring the relationship between the 

technical and economic aspects of the work of railway transport facilities is the lack of 

knowledge about the relationship between the technical conditions of the elements and 

the structure of the railway track, operating conditions, and the system of periodicity 

maintenance at the operational stage of its life cycle. This factor requires the introduction 

of new approaches to the criteria and methods for its assessment. 

Therefore, based on the introduced criteria of deformability work and intensity of 

use, a method for evaluating the operation deformability of a railway track is proposed, 

the algorithm of which is shown in Figure 8. The method involves the use of the existing 

system of standards that characterize the state of both the elements and the track structure. 

These standards make it possible to determine under what geometric or rigid deviations 

from the norms the track elements and structures refer to the following different technical 

states: railway track good state, faulty state, up state, partial up state, disabled state, 

damage, defect, partial failure, complete failure. These states characterize the functional 

state of the track during the life cycle of the track operation. In turn, the functional states 

determine such characteristics as reliability, availability, maintainability, and safety 

(RAMS) of both the element and the track structure. The existing regulatory systems for 

the maintenance of the track, developed on the basis of experience with its operation, 

determine the scope and procedure for its restoration from one technical state to another. 

Modeling of the processes of interaction of a path and rolling stock using the theory of 

elastic waves allows establishing the dependence of the influence of the technical 

condition of each element and their aggregate on a technical condition of a track structure. 

Thus, the relationship between the techno-economic aspects of exploitation can be 

investigated. 
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Figure 8. Algorithm of the Method of Estimating the Operation Deformability of a Railway Track. 

The combination of using the proposed modeling method and systems of normative 

evaluation of the track allows assessing the influence of both the geometry of the structure 

of each element and the state of the material of each element of the track structure on the 

operation of the track structure itself according to the norm and the current actual state. 

Thus, the above algorithm for a certain section of the track allows for determining the 

efficiency of the relationship, in terms of technical use of the track, between track 

operating conditions, periodicity of track maintenance, and track structure by estimating 

losses in their various variations. 
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4. Discussion, Conclusion and Future Recommendation 

Since the proposed approach allows you to correctly describe the physical processes 

that occur inside both the track elements and the structure over time, this allows 

evaluating and managing the infrastructure’s functional safety at the stage of object 

operation simulation by: 

­ Modeling of time-space processes occurring both inside each element of the structure 

and in the track structure as a whole under the influence of both external and internal 

influences; 

­ Modifying of models by changing the geometric and physical-mechanical 

characteristics of structural elements for certain operating conditions; 

­ Optimizing the risks associated with unsuccessful trials; 

­ Controlling deformability parameters in dynamic processes; 

­ Expanding existing methods for diagnosing dynamic systems; 

­ Optimizing costs for the manufacture and operation of simulation objects, as well as 

damage prediction during continued operation. 

This allows optimizing objects by modifying their design, the properties of materials 

of objects, and the technology of maintenance under specific operating conditions. All this 

contributes to increasing the competitiveness of infrastructure facilities in general. 

Improving the railway infrastructure can bring about improvements in terms of both 

geometry and safety. A careful analysis of the materials used in its construction will make 

it possible to make more sustainable modal choices with respect to the environment and 

the objectives of the 2030 Agenda (UN), also correlating them with the development of 

rail-road intermodality, thereby also reducing the environmental impact. 
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