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CONSTRUCTIVE-SYNTHESIZING REPRESENTATION

OF GEOMETRIC FRACTALS

V. I. Shynkarenko UDC 510+004.94

Abstract. A constructive-production approach, which is more general than other well-known

approaches, is proposed to generate fractals. Possibilities are shown for using a large variability of

attributes and initial elements of formation of fractals, as well as combining fractals into

multifractals. The possibilities of generating fractals are extended by eliminating the constraints

necessary in other approaches. The proposed approach allowed to establish several previously

unknown properties of fractional dimension that consist of the possibility of changing it in the

process of generation of a fractal and a mismatch of fractional dimensions of the form limit during

generation and the limiting fractal. A simple definition of a deterministic geometric fractal is given.

This definition takes into account all the properties characterizing such a fractal.

Keywords: constructor, fractal, multifractal, fractional dimension, Sierpinski triangle, fractal

geometry.

INTRODUCTION

The rapid development of fractal geometry was initiated by B. Mandelbrot [1]. Fractals are found out in many

natural objects and processes. Fractal models are used in many scientific areas such as biology, architecture, medicine,

materials science, nuclear physics, astronomy, mathematics, information systems, etc.

There are several alternative approaches to the formation of fractals, namely, algorithmic [1–5]; functional

algorithmic with the use of a system of iterated functions based on a collection of contracting mappings [2, 4, 5];

L-systems [2]; contracting affine automata [6].

The algorithmic approach was formed when describing first classic fractals such as the Sierpinski triangle and

carpet, Koch snowflake, etc. Algorithms of formation of these fractals were proposed.

The functional-algorithmic approach consists of representing fractal geometry using classical mathematics.

A rather new direction of formation of fractals, namely, contracting affine automata, allows to form fractals based

on affine transformations and has its theoretical basis in the form of finite automata.

L-systems proposed by A. Lindemayer [7] as an essential modification of formal grammars received the greatest

practical application in computer graphics.

In [8–10], the foundations of constructive-synthesizing modeling (CSM) were laid within the framework of which

it is possible to model any constructions and constructive processes in the fields of information technologies, building,

mechanical engineering, robotics, biology, etc. The proposed apparatus allows to formalize processes and results of

formation of constructions of various nature by connecting elements of constructions and taking into account properties

of elements, their aggregates (forms), and connections.

186 1060-0396/19/5502-0186

©

2019 Springer Science+Business Media, LLC

V. Lazaryan Dnipropetrovsk National University of Railway Transport, Dnipro, Ukraine, Shinkarenko_vi@ua.fm.

Translated from Kibernetika i Sistemnyi Analiz, No. 2, March–April, 2019, pp. 22–35. Original article submitted

March 13, 2018.

DOI 10.1007/s10559-019-00123-w



This article considers the application of CSM to the formation of fractals. This approach is closest to L-systems.

It is more adapted for work with attributes and is more flexible in specifying the process of inference.

CONCEPT OF A CONSTRUCTOR

We call the following triple a constructor [8]:

C M� � �, ,� � ,

where M is a heterogeneous replenishable carrier, � is the signature of operations (and the corresponding relations)

of connection, substitution, and inference and also operations over attributes, � is a set of (formal and informal)

statements of construction dataware (CDW). CDW includes an ontology, an objective, rules, constraints, initial

conditions, and conditions of completion of construction. The ontology of the generalized constructor � is presented

in [8]. In this case, a number of refining transformations of the generalized constructor are provided.

Specialization determines the following ontology of a subject area: the semantic nature of its carrier, the objective

common to its family of problems, a finite set of operations and their semantics, attributes of operations, the order of their

execution, and constraints. The specialization operation S � is executed by an external executor.

Interpretation lies in linking signature operations with algorithms that execute some algorithmic structure [10]. During

interpretation, the models of the constructor and internal executor of the process of construction are linked. The result of

an interpretation I � is a constructive system. The interpretation operation is executed by an external executor.

A concretization of a constructor provides for specifying concrete rules, constraints, initial conditions, and also the

conditions of construction completion and concretization of the following carrier element base: the sets of its nonterminal

and terminal symbols with their attributes and (if necessary) the values of attributes. After interpreting and concretizing

K �, which are performed by an external executor, the constructive system has everything necessary for independent

formation of constructions.

The implementation R � performed by an internal executor of the system consists of the formation of

a construction from carrier elements by executing algorithms related to signature operations. Only a previously

specialized, interpreted, and concretized constructor can be implemented.

SPECIALIZATION OF CONSTRUCTORS OF GEOMETRIC OBJECTS

IN THE SPACE R
2

The specialization of a constructor lies in the formation of geometric figures (constructions) in the space R
2

including the following fractals:

C M C MS G G G G� � � � � �, , , ,� � � �� ,
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	G � � � �{ }}, | , || . Here, we have the following sets: TG are conditionally indivisible graphic construction

elements; FG and KG are intermediate forms and constructions, respectively; �G are relations of relative positions

of geometric figures (binding of elements) that are specified graphically; 	G are the operations of substitution and

inference, 
G are operations over attributes, and also the relations of substitution (�) and attributiveness (�).

The CDW component �
2

contains definitions, additions, and constraints that refine the alphabet, carrier attributes,

and substitution relations and determine the peculiarity of executing the substitution and inference operations.

A figure or an object is understood to be a compact connected set in R
2

.

The presence of an attribute w at a carrier element m is denoted by wm (the identifier m with the attribute w),

and the designation w m� testifies that w is an attribute of the identifier m.

The terminal alphabet TG consists of a set of geometric objects with attributes.
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Moreover, the possibilities of formation of fractals are extended by eliminating the constraints required for other

approaches, namely,

— the initial elements of formation of fractals must be represented by essentially disjoint sets;

— only contracting mappings are used.

The proposed approach has allowed to establish several previously unknown properties of fractional dimension,

namely,

— the possibility of changing it during the generation of the limiting fractal and convergence, in particular, to 1;

— the noncoincidence of fractional dimensions of the limit of forms during generation and the limiting fractal

lim ( ( )) ( lim ( ))

N
N

N
Nd f d f

�� ��

� .

Using CSM has allowed to give a simple definition of a deterministic geometric fractal taking into account all the

properties characterizing it.
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