УДК 629.423.3

Е.П. БЛОХИН, д-р техн. наук, проф. (ДНУЖТ),

М.Л. КОРОТЕНКО, д-р техн. наук, проф. (ДНУЖТ),

Р.Б. ГРАНОВСКИЙ, канд. техн. наук (ДНУЖТ),

В.В. ЧУМАК, канд. техн. наук (НПК «ДЭВЗ»),

Н.Я. ГАРКАВИ, ст. научн. сотр. (ДНУЖТ),

Е.М. ДЗИЧКОВСКИЙ, аспирант (ДНУЖТ).

ОСОБЕННОСТИ КОЛЕБАНИЙ ЭЛЕКТРОВОЗОВ, ИМЕЮЩИХ ПОДВЕШИВАНИЕ ТЯГОВОГО ПРИВОДА КЛАССА II

Стаття присвячена впливу розміщення тягових двигунів і редукторів на коливання рам візків і кузова електровоза, що має підвішування тягового привода класу II.

Статья посвящена влиянию размещения тяговых двигателей и редукторов на колебания рам тележек и кузова электровоза, имеющего подвешивание тягового привода класса II.

The paper is dedicated the influence of the draft engine and reduction placement; it also concerns the oscillation of the the bogie frames and the locomotive body, which has a draft drive suspension of the 2^{nd} class

Применение асинхронных тяговых двигателей и опорно-рамного их подвешивания считается перспективным направлением в развитии электровозостроения, так как позволяет повысить мощность электровоза и уменьшить массу необрессоренной его части. Однако использование подвешивания тягового привода класса II, при котором тяговый двигатель связан с рамой тележки, а редуктор имеет опорно-осевое подвешивание, и особенности компактного размещения в двухосной тележке двух индивидуальных тяговых приводов приводят к возникновению кососимметричной нагрузки, действующей на раму тележки. Величина нагрузки зависит от расположения тяговых электродвигателей, расположения точек подвески редукторов относительно геометрического центра тележки, от мощности двигателя, а также от передаточного отношения тягового редуктора.

Во время проведения ходовых динамических испытаний первого опытного образца скоодносекционного четырехосного электровоза с асинхронными двигателями и типом подвешивания тягового привода класса II авторы имели возможность регистрировать величины сжатия рессорных комплектов в первой и во второй ступенях подвешивания и сравнивать их с аналогичными величинами у подобного ему электровоза-эталона ЧС8, имеющего две четырехосные секции и суммарную мощность, близкую к мощности опытного электровоза. Оба электровоза находились в одном сцепе. Опыты проводились так, что в одних случаях электровоз-эталон был заторможен, а опытный электровоз сначала медленно набирал силу тяги до максимального ее значения (310 кН) и затем медленно сбрасывал ее, а в других – опытный электровоз работал в режиме толкания. Графики полученных зависимостей прогибов в первой ступени подвешивания от силы тяги приведены на рисунках 1,2.

Опыты показали, что у одного и у другого электровозов имеет место пропорциональная силе тяги или тормозной силе в режиме рекуперации кососимметричная квазистатическая деформация пружин первой ступени подвешивания. К этой квазистатической составляющей во время движения добавляется динамическая составляющая (рисунок 3). В то время, как динамическая составляющая с ростом скорости растет, квазистатическая составляющая уменьшается в соответствии с тяговой характеристикой локомотива.

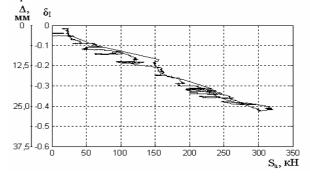


Рис. 1. Перемещения левого пружинного комплекта первой колесной пары при создании силы тяги

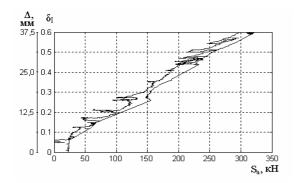


Рис. 2. Перемещения правого пружинного комплекта второй колесной пары при создании силы тяги

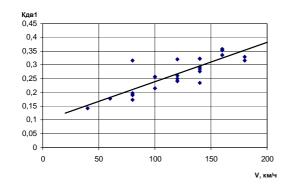


Рисунок 3 - Коэффициенты вертикальной динамики в I ступени рессорного подвешивания

Наиболее заметна кососимметричная деформация у односекционного электровоза, у которого мощность распределяется не по 8-ми, по 4-м колесным парам. В тяговом и тормозном режимах наибольшие деформации имеют место у пружинных комплектов, находящихся со стороны редукторов. Так, у опытного электровоза при максимальной силе тяги дополнительное сжатие левого пружинного комплекта первой по ходу колесной пары первой тележки составило 26 мм, а деформация другого знака правого пружинного комплекта второй колесной пары оказалась равной 37,5 мм, что составляет 42 и 60% от значения статического прогиба. Деформации противоположных комплектов незначительны. В табл. 1 приведены значения прогибов всех пружинных комплектов для режима тяги и рекуперации. Первый индекс в названии пружинного крмплекта соответствует номеру оси, второй - стороне (1левая, 2-правая). Знак «+» соответствует растяжению пружинного комплекта, «-» - сжатию.

Разница в прогибах соответствующих пружин первой ступени подвешивания первой и второй тележек составила 10 % от значения статической нагрузки, при этом догружения оси колесной пары от перекоса тележки не наблюдалось. Эта разница обусловлена догружением второй тележки и разгрузкой первой от действия силы тяги в авто-

сцепке. По этим данным коэффициент использования сцепного веса локомотива составляет 0,95. По расчетам этот коэффициент составил 0,93 для угла наклонной тяги 4°. На рис. 3 представлено положение тележки при создании силы тяги.

Таблица 1 Прогибы пружинных комплектов (мм)

Режим	Тяга	Рекуперация
P ₁₁	-26,0	24,5
P ₁₂	4,5	-2,2
P ₂₁	6,7	-4,3
P ₂₂	37,5	-31,0
P ₃₁	-33,5	29,1
P ₃₂	-1,7	3,7
P ₄₁	1,0	-2,5
P_{42}	31,0	-27,9

Как видно из табл. 1 деформации пружинных комплектов второй тележки аналогичны деформациям у первой тележки. Следстием этого является поворот кузова электровоза. Поворот кузова при этом вокруг продольной и поперечной горизонтальных осей вызывает смещение центра тяжести, а это, в свою очередь, создает неодинаковые условия прохождения стрелочных переводов, левых и правых кривых.

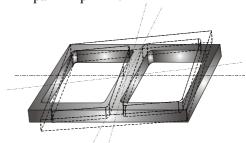


Рис. 4 - Перемещения тележки при создании силы тяги

Выводы. Явление кососимметричной деформации вызывает неравномерную нагрузку на пружинные комплекты, подшипники, раму тележки и раму кузова, влияет на динамические показатели, создает неодинаковые условия прохождения левых и правых кривых. За счет конструктивных решений необходимо свести к минимуму кососимметричную деформацию.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- Конструкция и динамика тепловозов / Под ред. В.Н. Иванова. – М.:Транспорт, 1974. – 336 с.
- 2. Нормы для расчета и оценки прочности несущих элементов, динамических качеств и воздействия на путь экипажей локомотивов железных дорог МПС РФ колеи 1520 мм. М.: ВНИИЖТ РФ, 1998.