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Abstract The effective properties of the fiber-reinforced composite materials with fibers of circular cross
section are investigated. The novel estimation for the effective coefficient of thermal conductivity refining
the classical Maxwell formula is derived. The method of asymptotic homogenization is used. For analytical
solution of the periodically repeated cell problem, the Schwarz alternating process is employed. The principal
term of the refined formula coincides with the classical Maxwell formula. On the other hand, the refined
formula can be used far beyond the area of applicability of the Maxwell formula. It can be used for dilute and
non-dilute composites. It is confirmed by comparison with known numerical and asymptotic results.

1 Introduction

In the case of a composite structure with periodically located cylindrical inclusions of circular cross sections,
a formula for the heat transfer parameter obtained based on the three phase model (TPhM) of a composite
coincides with the well-known Maxwell formula (MF) [1], and it reads

q =
λ
(
1 + πa2

4

)
+ 1 − πa2

4

λ
(
1 − πa2

4

)
+ 1 + πa2

4

. (1.1)

Equation (1.1) is also referred to as the Maxwell–Garnett, Maxwell–Odelevskii, Clausius–Mossotti, Lorenz–
Lorentz, Landauer, and Wiener–Wagner formula (see references [2–6]). A more detailed analysis of the MF
implies the following conclusions:
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(i) relation (1.1) describes adequately a character of the effective composite conductivity in the case of the
inclusions concentration a � 1 for arbitrary values of their conductivity λ;

(ii) for large sizes of inclusions a → 1, the TPhM yields reliable results in the case of λ ∼ 1;
(iii) TPhM does not work properly (qualitatively and quantitatively) for large sizes of inclusions a → 1 for

the limiting large (λ → ∞) or limiting small (λ → 0) conductivity. It means from the physical point of
view that formula (1.1) offers neither a qualitative nor quantitative reliable description of the processes
occurring in a composite, like the emergence of an infinite cluster. From the mathematical point of view,
it refers to a lack of convergence of the asymptotic relation yielded by (1.1) for λ → ∞, a → 1, with
regard to the asymptotic results [7]:

q(∞)
as = π√

1 − a2
− π + 1 ≈ 3.14159√

1 − a2
− 2.14159 f orλ → ∞, a → 1. (1.2)

The analogous conclusion holds for the case of limiting small conductivity of inclusions (λ → 0) having large
geometric sizes (a → 1), where the Keller theorem implies the following estimation [8]:

q(0)
as =

√
1 − a2

π − (π − 1)
√
1 − a2

for λ → 0, a → 1. (1.3)

The asymptotic formula (1.2) was improved in [9] using the method of functional equations:

q(∞)
as ( f ) = 5.56250√

π
√
1 − a2

− 1.84934 ≈ 3.13830√
1 − a2

− 1.84934,

as λ → ∞, f → fc, where f = πa2

4
, fc = π

4
.

It serves as an example of application of the renormalization method when we do not know the critical index
and amplitude. This example was used for random composites in [9]. The best formula with known critical
index and amplitude was deduced in the book [10] (pp. 55–56).

In this work, we construct the generalization of theMF formula allowing for sufficient extension of intervals
of its applicability. Our research is based on the asymptotic homogenization method. Using a multiple scale
asymptotic approach, we subdivide the original problem into both a local cell problem and a global problem
for the whole composite with homogenized (effective) properties. For approximate analytical solving of the
cell problem, we use the Schwarz alternating method (SAM). As a result, we obtain analytical expressions for
the effective properties of the two-phase composite material under consideration.

The MF coincides with one of the Hashin–Shtrikman bounds [11]. Namely, the MF equals the Hashin–
Shtrikman lower bound if the physical characteristics of the inclusions are larger than that of the matrix, and
MF equals the Hashin–Shtrikman upper bound if the physical characteristics of the inclusions are smaller than
that of the matrix.

Originally theMFwas obtained by solving the problem of conductivity of a dilute suspension of conducting
spheres in a conducting matrix. Thus, strictly speaking, theMFwas obtained assuming a small volume fraction
c of inclusions: c�1. But the formula works quite well in the cases of medium and large sizes of inclusions of
arbitrary shapes other than high contrast composites; see [5,6]. The boundary perturbation method was applied
in [12] for the construction of the first amendment of the MF in the case of square cylindrical inclusions. The
effective properties of the fibrous composites with fibers of square cross sections are analyzed in [13,14].

It was shown by Berdichevsky [15] that the MF provides a very good approximation for the effective
coefficient of thermal conductivity for composites with cubic lattices, and the corrections for different types
of lattices (simple cubic, volume-centered and edge-centered) were obtained. The upper and lower estimates
of the effective coefficient of the thermal conductivity of composites with spherical inclusions are also given
in [15]. Further, it is shown that the MF undervalues the effective coefficient of the thermal conductivity if the
conductivity of the inclusions is larger than the conductivity of the matrix, and overvalues it in the opposite
case.

The refinement of the MF is an interesting and important task, and it has attracted the attention of many
researchers.

A refinement of theMFwas obtained byMilton [5] for 2D and 3D composites on account of the geometrical
arrangement of the constituents and their physical characteristics.
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In [16], most attention to Maxwell’s approach is paid to circular disks where the final formulae can be
explicitly written. A series in the contrast parameter for the effective conductivity is truncated and the second
and third-order terms are analyzed. It is shown that for macroscopically isotropic composites the second-order
term does not depend on the location of inclusions, while the third-order term does.

The Clausius–Mossotti formula was further extended in [17] for non-dilute composites with circular fibers
by adding higher order terms to the concentration.

Levin et al. [18] has formulatedMaxwell’s homogenization scheme in terms of the induced dipolemoments
of the representative volume element (RVE) of actual composite and properly defined equivalent inclusion.
Numerical study shows that the proposed version of Maxwell’s scheme enables evaluation of the effective
properties of both periodic and random structure composites with accuracy, comparable with that of Rayleigh’s
method.

The paper [19] is concerned with the problem of the conductivity of double-periodic composite materials
with circular inclusions. An exact formula for the tensor of effective conductivity is given, which in the dilute
case reduces to the Maxwell formula.

In a number of publications, the Maxwell approach was developed in combination with the cluster method.
Thus, in paper [20] extensions of Maxwell’s self-consistent approach from single- to n-inclusions problems
lead to cluster methods applied to the computation of the effective properties of composites. Paper [21] is
devoted to the cluster method for two dimensional elasticity problems and shows how to apply the cluster
method to 2D elastic composites.

Analysis of the so far reviewed papers allows us to draw the following conclusions:

1. There is a large number of theoretical and practical problems in the theory of composites, for their solution
it is natural to apply Maxwell-type formulas.

2. Unfortunately, the accuracy of Maxwell’s formula and its modifications is not always sufficient from the
modern point of view.

3. Refinement of Maxwell’s formula can be based on some physically justified hypotheses [18], and by
constructing the higher-order approximations of some asymptotic processes [7,9,12–14,17,22,23].

The present paper is devoted to the derivation of the refinement of the MF for fiber-reinforced composites
with cylindrical fibers of circular cross sections. It is based on the homogenization method with the analytical
solution of cell problems using the Schwarz and Padé approximation methods.

The paper is organized as follows. The statement of the problem is described in Sect. 2. The unit-cell
problems are formulated and solved in Sect. 3. The refinedMaxwell formula is derived in Sect. 4. The analysis
of the obtained corrections to the MF is provided in Sect. 5. Numerical results are analyzed in Sect. 6. Finally,
Sect. 7 presents the concluding remarks.

2 Statement of the problem

In the case of the heat transfer problem regarding a double-periodic composite structure with a small (a�1)
cylindrical inclusion of circular cross sections, the local problem (in frame of the averaging method) can be
defined in the following way:

∂2u+
1

∂ξ2
+ ∂2u+

1

∂η2
= 0 inΩ+

i ; (2.1)

∂2u−
1

∂ξ2
+ ∂2u−

1

∂η2
= 0 inΩ−

i ; (2.2)

u+
1 = u−

1 ; ∂u+
1

∂ξ
− λ

∂u−
1

∂ξ
= (λ − 1)

∂u0
∂ξ
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u+
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1
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1
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1

∂η
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∂u0
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∂η

∣∣
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∂η

∣∣
η=− 1 . (2.4)
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3 Solution of the unit-cell problems

We will use Schwarz alternating method (SAM) [9,22–26] to solve the problem, as it yields a solution of the
problemwithin the (01) approximation of SAM, which refers to the problem formulated for circular inclusions
�

− (0)
i embedded into the infinite space �

+ (0)
i . Note that the convergence of the Schwarz algorithm under

fairly general assumptions was proved in [27]. Mikhlin [27] stated the problem of convergence and proved it
for a doubly connected domain. He also noticed that the method should work for a multiple connected domain
when the holes are far away one from another. The convergence of the Schwarz alternating method in the
general case for an arbitrary multiply connected domain was proved in publications summarized in Chapter 3
of [9].

In the latter case, the problem defined on the cell (2.1)–(2.4) can be recast in the fast polar coordinates
r , θ , and it is governed by the following equations:

∂2u−(01)
1

∂r2
+ 1

r
· ∂u−(01)

1

∂r
+ 1

r2
· ∂2u−(01)

1

∂θ2
= 0 inΩ

−(0)
i ; (3.1)

∂2u+(01)
1

∂r2
+ 1

r
· ∂u+(01)

1

∂r
+ 1

r2
· ∂2u+(01)

1

∂θ2
= 0 inΩ

+(0)
i ; (3.2)

u+(01)
1 = u−(01)

1 ; ∂u+(01)
1

∂r
− λ

∂u−(01)
1

∂r
= (λ − 1)

(
∂u0
∂x

cos θ + ∂u0
∂y

sin θ

)
for r = ã; (3.3)

u+(01)
1 → 0; ∂u+(01)

1

∂r
→ 0 for r → ∞. (3.4)

A solution to the coupled problem (3.1)–(3.4) takes the form

u− (01)
1 = A(01)

1 r cos θ + A(01)
2 r sin θ, (3.5)

u+ (01)
1 = B(01)

1

r
cos θ + B(01)

2

r
sin θ, (3.6)

where A(01)
1 , A(01)

2 , B(01)
1 , B(01)

2 are arbitrary constants.

It is worthy tomention that representation of the function u− (01)
1 in the form of (3.5) includes the boundaries

of the function governing temperature distribution and its derivation
∂u− (01)

1
∂r (heat stream in radial direction)

for r = 0, whereas the function u+ (01)
1 (3.6) satisfies conditions of damping of the latter characteristics for

r → ∞ (3.4).
Observe that relations (3.5), (3.6) include four arbitrary constants, i.e. each two for them stand as the

basic functions cos θ and sin θ (A(01)
1 , B(01)

1 and A(01)
2 , B(01)

2 , respectively), which are defined through
compatibility conditions (3.3). Since the systems of equations which require definition of the integration
constants A(01)

1 , B(01)
1 and A(01)

2 , B(01)
2 are the same to avoid repetitions, to avoid repetition, we present only

one of them: {
A(01)
1 a = B(01)

1 a− 1,

−B(01)
1 a− 2 − λA(01)

1 = ∂u0
∂x (λ − 1) .

(3.7)

Solving equations (3.7) allows to find the integration constants
{
A(01)
1 = −λ−1

λ+1
∂u0
∂x = ∂u0

∂x A(01) ∗
,

B(01)
1 = − (λ−1) a2

λ+1
∂u0
∂x = ∂u0

∂x B(01) ∗
,

(3.8)

where

A(01) ∗ = −λ − 1

λ + 1
and B(01) ∗ = − (λ − 1) a2

λ + 1
. (3.9)

It is clear that for arbitrary constants A(01)
2 and B(01)

2 we have

A(01)
2 = A(01)

1 and B(01)
2 = B(01)

1

(
∂u0
∂x

→ ∂u0
∂y

)
. (3.10)
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Therefore, the solution of the (01) approximation is as follows:

u−(01)
1 = −∂u0

∂x

λ − 1

λ + 1
r cos θ−∂u0

∂y

λ − 1

λ + 1
r sin θ, u+(01)

1 = −∂u0
∂x

λ − 1

λ + 1
a2

cos θ

r
−∂u0

∂y

λ − 1

λ + 1
a2

sin θ

r
,

(3.11)

or equivalently

u−(01)
1 = −λ − 1

λ + 1

(
∂u0
∂x

ξ + ∂u0
∂y

η

)
, u+(01)

1 = −∂u0
∂x

λ − 1

λ + 1
a2
(

∂u0
∂x

ξ

ξ2 + η2
+ ∂u0

∂y

η

ξ2 + η2

)
. (3.11’)

In what follows, we construct the (02) approximation of the SAM, which refers to the solution of the problem
in the cell matrix �∗

i .
Now, the periodicity conditions (2.4) located on opposite sides of the cell are satisfied, and the compatibility

conditions (2.3) are ignored. Since the function u(02)
1 should correct errors occurring in the solution u+ (01)

1 on
the sizes of the cell, the following boundary value problem holds:


u(02)
1 = 0 in�∗

i ; (3.12)(
u+ (01)
1 + u(02)

1

) ∣∣
ξ=1 =

(
u+ (01)
1 + u(02)

1

) ∣∣
ξ=− 1 ,

∂
(
u+ (01)
1 + u(02)

1

)

∂ξ

∣∣
ξ=1 =

∂
(
u+ (01)
1 + u(02)

1

)

∂ξ

∣∣
ξ=− 1 , (3.13)

(
u+ (01)
1 + u(02)

1

) ∣∣
η=1 =

(
u+ (01)
1 + u(02)

1

) ∣∣
η=− 1 ,

∂
(
u+ (01)
1 + u(02)

1

)

∂η

∣∣
η=1 =

∂
(
u+ (01)
1 + u(02)

1

)

∂η

∣∣
η=− 1 . (3.14)

We assume
u(02)
1 = u(02)

11 + u(02)
12 , (3.15)

where u(02)
11 satisfies non-homogenous boundary conditions with regard to ξ and homogenous boundary con-

dition with regard to η. Therefore, the following equations should be satisfied:


u(02)
11 = 0 in�∗

i ; (3.16)(
u+ (01)
1 + u(02)

11

) ∣∣
ξ=1 =

(
u+ (01)
1 + u(02)

11

) ∣∣
ξ=− 1,

∂
(
u+ (01)
1 + u(02)

11

)

∂ξ

∣∣
ξ=1 =

∂
(
u+ (01)
1 + u(02)

11

)

∂ξ

∣∣
ξ=− 1 , (3.17)

u(02)
11

∣∣
η=1 = u(02)

11

∣∣
η=− 1 ; ∂u(02)

11

∂η

∣∣
η=1 = ∂u(02)

11

∂η

∣∣
η=− 1 . (3.18)

It is obvious that the function u(02)
12 can be found in an analogous way simply by using the change: ξ

→
← η.

A general solution of Eq. (3.16) takes the form

u(02)
11 = A(02)

0 + B(02)
0 ξ +

∞∑
n=1

[ (
A(02)
n cosh πnξ + B(02)

n sinh πnξ
)
cos πnη

+
(
C (02)
n cosh πnξ + D(02)

n sinhπnξ
)
sin πnη

]
, (3.19)

where A(02)
0 , B(02)

0 , A(02)
n , B(02)

n , C (02)
n , D(02)

n (n = 1 , 2 , ...) are arbitrary constants.
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In order to satisfy the boundary conditions (3.17), we recast them considering the (01) approximation of
(3.11) to the following form:

u(02)
11

∣∣
ξ=1 − u(02)

11

∣∣
ξ=− 1 = ∂u0

∂x · 2 a2

1+η2
λ−1
λ+1 ,

∂u(02)
11

∂ξ

∣∣
ξ=1 − ∂u(02)

11
∂ξ

∣∣
ξ=− 1 = − ∂u0

∂y · 4 a2η

(1+η2)
2

λ−1
λ+1 .

(3.20)

The right-hand sides of equations (3.20) are expand into the following Fourier series:

1
1+η2

= π
4 +

∞∑
n=1

[
e−πn Im E1 (−πn + iπn) −eπn Im E1 (πn + iπn) + πe−πn

]
cos πnη,

η

(1+η2)
2 = π

2

∞∑
n=1

n
[
eπn Im E1 (πn + iπn) −e−πn Im E1 (−πn + iπn) − πe−πn

]
sin πnη,

(3.21)

where i = √−1 and E1 stands for the exponential integral [28].
Comparison of the corresponding coefficients in (3.20), accounting for (3.21) yields the (02) approximation

coefficients:

A(02)
0 = 0 ; A(02)

n = D(02)
n = 0 , n = 1 , 2, . . . ;

B(02)
0 = ∂u0

∂x
B(02) ∗
0 ; B(02)

n = ∂u0
∂x

B(02) ∗
n ; C (02)

n = ∂u0
∂y

C (02) ∗
n , n = 1 , 2 , ... ; (3.22)

B(02) ∗
0 = λ − 1

λ + 1
· πa2

4
; (3.23)

B(02) ∗
n = −C (02) ∗

n = λ − 1

λ + 1
a2 Sn, (3.24)

where

Sn = e−πn Im E1 (−πn + iπn) − eπn Im E1 (πn + iπn) + πe−πn

sinh πn
. (3.25)

Consequently, we get

u(02)
11 = ∂u0

∂x
B(02) ∗
0 ξ +

∞∑
n=1

(
∂u0
∂x

B(02) ∗
n sinh πnξ cos πnη − ∂u0

∂y
C (02) ∗
n cosh πnξ sin πnη

)
. (3.26)

Proceeding in an analogous way yields

u(02)
12 = u(02)

11

(
∂u0
∂x

→
←

∂u0
∂y

; ξ
→
← η

)
. (3.27)

Finally, the (02) order approximation takes the following form:

u(02)
1 = λ − 1

λ + 1
· πa2

4

(
∂u0
∂x

ξ + ∂u0
∂y

η

)
+ λ − 1

λ + 1
a2

∞∑
n=1

Sn

[
∂u0
∂x

(sinh πnξ cos πnη−

− cosh πnη sin πnξ) + ∂u0
∂y

(sinh πnη cos πnξ − cosh πnξ sin πnη)

]
. (3.28)

In the (03) order approximation, we should remove the lack of compliance of the function u(02)
1 governed by

(3.28), on the circular contour of an inclusion with radius r = a. For this purpose, we develop the function
u(02)
1 into a series regarding polar coordinates r , θ ; assuming a small radius r of the inclusions, we obtain

B(02) ∗
0

(
∂u0
∂x

ξ + ∂u0
∂y

η

)
+

∞∑
n=1

B(02) ∗
n

[
∂u0
∂x

(sinh πnξ cos πnη − cosh πnη sin πnξ)

+∂u0
∂y

(sinh πnη cos πnξ − cosh πnξ sin πnη)

]
= B(02) ∗

0

(
∂u0
∂x

r cos θ + ∂u0
∂y

r sin θ

)
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+2
∞∑
n=1

B(02) ∗
n

[
∂u0
∂x

∞∑
k=1

(πnr)4k−1 cos (4k − 1) θ

(4k − 1) ! + ∂u0
∂y

∞∑
k=1

(πnr)4k−1 sin (4k − 1) θ

(4k − 1) !

]
,

or

B(02) ∗
0

(
∂u0
∂x

ξ + ∂u0
∂y

η

)
+

∞∑
n=1

B(02) ∗
n

[
∂u0
∂x

(sinh πnξ cos πnη − cosh πnη sin πnξ)

+∂u0
∂y

(sinh πnη cos πnξ − cosh πnξ sin πnη)

]
= B(02) ∗

0

(
∂u0
∂x

r cos θ + ∂u0
∂y

r sin θ

)

+2
∞∑
k=1

π4k−1

(4k − 1) !

( ∞∑
n=1

B(02) ∗
n n4k−1

) (
∂u0
∂x

r4k−1 cos (4k − 1) θ

+∂u0
∂y

r4k−1 sin (4k − 1) θ

)
. (3.29)

Observe that now the right-hand side of (3.29) is convergent for all values of 0 ≤ r < ∞.
The correcting terms of the (03) approximation follow:

u− (03)
1 = A(03)

10 r cos θ + A(03)
20 r sin θ

+
∞∑
k=1

(
A(03)
1k r4k−1 cos (4k − 1) θ + A(03)

2k r4k−1 sin (4k − 1) θ
)
; (3.30)

u+ (03)
1 = B(03)

10

r
cos θ + B(03)

20

r
sin θ +

∞∑
k=1

(
B(03)
1k

cos (4k − 1) θ

r4k−1 + B(03)
2k

sin (4k − 1) θ

r4k−1

)
,

(3.31)

where the constants

A(03)
10 = A(03)∗

10
∂u0
∂x

, B(03)
10 = B(03)∗

10
∂u0
∂x

;

A(03)
20 = A(03)∗

20
∂u0
∂y

, B(03)
20 = B(03)∗

20
∂u0
∂y

and

A(03.n)
1k = A(03.n)∗

1k
∂u0
∂x

, B(03.n)
1k = B(03.n)∗

1k
∂u0
∂x

;

A(03.n)
2k = A(03.n)∗

2k
∂u0
∂y

, B(03.n)
2k = B(03.n)∗

2k
∂u0
∂y

are defined through solution of either the following
⎧⎨
⎩

A(03)∗
m0 a = B(03)∗

m0
a

− B(03)∗
m0
a2

− λ A(03)∗
m0 = (λ − 1) B(02)∗

0

or the following ⎧⎪⎨
⎪⎩

A(03.n)∗
mk a4k−1 = B(03.n)∗

mk
a4k−1

− B(03.n)∗
mk
ã4k

− λ a4k−2A(03.n)∗
mk = 2 (λ−1)π4k−1a4k−2

(4k−1) !
∞∑
n=1

B(02) ∗
n n4k−1

(3.32)

system of equations. Therefore, we get

A(03) ∗
m0 = −λ − 1

λ + 1
B(02) ∗
0 = −

(
λ − 1

λ + 1

)2
πa2

4
, B(03) ∗

m0 = −λ − 1

λ + 1
a2B(02) ∗

0 = −
(

λ − 1

λ + 1

)2
πa4

4
,
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A(03)∗
mk = − 2π4k−1

(4k − 1) ! · λ − 1

λ + 1

∞∑
n=1

B(02) ∗
n n4k−1 = −2π4k−1a2

(4k − 1) ! ·
(

λ − 1

λ + 1

)2 ∞∑
n=1

Snn
4k−1, (3.33)

B(03)∗
mk = −2π4k−1a8k−2

(4k − 1) ! · λ − 1

λ + 1

∞∑
n=1

B(02) ∗
n n4k−1 = −2π4k−1a8k

(4k − 1) ! ·
(

λ − 1

λ + 1

)2 ∞∑
n=1

Snn
4k−1. (3.34)

In other words, the final form of the (03) approximation governed by (3.30), (3.31), accounting for (3.33),
(3.34), is written in the following form:

u− (03)
1 = −λ − 1

λ + 1
B(02) ∗
0 r

(
∂u0
∂x

cos θ + ∂u0
∂y

sin θ

)

−λ − 1

λ + 1
2

( ∞∑
n=1

B(02) ∗
n n4k−1

) ∞∑
k=1

π4k−1 r4k−1

(4k − 1) !
(

∂u0
∂x

cos (4k − 1) θ + ∂u0
∂y

sin (4k − 1) θ

)
;

(3.35)

u+ (03)
1 = −λ − 1

λ + 1

B(02) ∗
0

r

(
∂u0
∂x

cos θ + ∂u0
∂y

sin θ

)

−λ − 1

λ + 1
2

( ∞∑
n=1

B(02) ∗
n n4k−1

) ∞∑
k=1

π4k−1a8k−2

(4k − 1) ! r4k−1

(
∂u0
∂x

cos (4k − 1) θ

+∂u0
∂y

sin (4k − 1) θ

)
. (3.36)

Reversing the numbering of the series due to k in formulas (3.35), (3.36) yields

u− (03)
1 = −λ − 1

λ + 1
B(02)∗
0

(
∂u0
∂x

ξ + ∂u0
∂y

η

)
− λ − 1

λ + 1

∞∑
n=1

B(02)∗
n

[
∂u0
∂x

(sinh πnξ cos πnη

− cosh πnη sin πnξ) + ∂u0
∂y

(sinh πnη cos πnξ − cosh πnξ sin πnη)

]
; (3.37)

u+ (03)
1 = −

(
λ − 1

λ + 1

)2
πa2

4

(
∂u0
∂x

ξ

ξ2 + η2
+ ∂u0

∂y

η

ξ2 + η2

)

−λ − 1

λ + 1

∞∑
n=1

B(02)∗
n

[
∂u0
∂x

(
sinh

πna2ξ

ξ2 + η2
cos

πna2η

ξ2 + η2
− cosh

πna2η

ξ2 + η2
sin

πna2ξ

ξ2 + η2

)

+∂u0
∂y

(
sinh

πna2η

ξ2 + η2
cos

πna2ξ

ξ2 + η2
− cosh

πna2ξ

ξ2 + η2
sin

πna2η

ξ2 + η2

)]
, (3.38)

i.e., we have

u− (03)
1 = −

(
λ − 1

λ + 1

)2
πa2

4

(
∂u0
∂x

ξ + ∂u0
∂y

η

)
−
(

λ − 1

λ + 1

)2

a2
∞∑
n=1

Sn

[
∂u0
∂x

(sinh πnξ cos πnη

− cosh πnη sin πnξ) + ∂u0
∂y

(sinh πnη cos πnξ − cosh πnξ sin πnη)

]
; (3.39)

u+ (03)
1 = −

(
λ − 1

λ + 1

)2
πa2

4

(
∂u0
∂x

ξ

ξ2 + η2
+ ∂u0

∂y

η

ξ2 + η2

)

−
(

λ − 1

λ + 1

)2

a2
∞∑
n=1

Sn

[
∂u0
∂x

(
sinh

πna2ξ

ξ2 + η2
cos

πna2η

ξ2 + η2
− cosh

πna2η

ξ2 + η2
sin

πna2ξ

ξ2 + η2

)

+∂u0
∂y

(
sinh

πna2η

ξ2 + η2
cos

πna2ξ

ξ2 + η2
− cosh

πna2ξ

ξ2 + η2
sin

πna2η

ξ2 + η2

)]
. (3.40)
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In the (04) approximation, we proceed in analogous way to remove lack of compliance of the function u+ (03)
1

of (3.40) on the external contour of the matrix.
We define for the function

u(04)
11 = A(04)

0 + B(04)
0 ξ +

∞∑
�=1

[ (
A(04)

� cosh π�ξ + B(04)
� sinh π�ξ

)
cos π�η+

(
C (02)

� cosh π�ξ + D(02)
� sinh π�ξ

)
sin π�η

]

the following boundary conditions for the cell at ξ = 1 and ξ = −1:

u(04)
11

∣∣
ξ=1 − u(04)

11

∣∣
ξ=− 1 = ∂u0

∂x

λ − 1

λ + 1
B(02) ∗
0

2

1 + η2

+∂u0
∂x

λ − 1

λ + 1
2

∞∑
n=1

B(02)∗
n

(
sinh

πna2

1 + η2
cos

πna2η

1 + η2
− cosh

πna2η

1 + η2
sin

πna2

1 + η2

)
; (3.41)

∂u(04)
11

∂ξ

∣∣
ξ=1 − ∂u(04)

11

∂ξ

∣∣
ξ=− 1 = −∂u0

∂y

λ − 1

λ + 1
B(02) ∗
0

4η(
1 + η2

)2

−∂u0
∂y

λ − 1

λ + 1
2πa2

∞∑
n=1

B(02) ∗
n n

[
2η(

1 + η2
)2 cosh

πna2η

1 + η2
cos

πna2

1 + η2

− 1 − η2(
1 + η2

)2 sinh
πna2η

1 + η2
sin

πna2

1 + η2
− 1 − η2(

1 + η2
)2 sinh

πna2

1 + η2
sin

πna2η

1 + η2

− 2η(
1 + η2

)2 cosh
πna2

1 + η2
cos

πna2η

1 + η2

]
. (3.42)

Assuming a � 1 and developing the functions standing on the right-hand sides of the formulas (3.41), (3.42)
into the Fourier series, allows to define the following coefficients:

A(04)
0 = 0 ; A(04)

� = D(04)
� = 0; (3.43)

B(04)
0 = ∂u0

∂x
B(04)∗
0 ; B(04)

� = ∂u0
∂x

B(04)∗
� ; C (04)

� = ∂u0
∂y

C (04)∗
� , � = 0 , 1 , 2 , ...; (3.44)

B(04)∗
0 = λ − 1

λ + 1

πa2

4
B(02)∗
0 + λ − 1

λ + 1

∞∑
n=1

B(02)∗
n

∞∑
m=1

(−1)m+1 (πna2)4m−1

22m−1 (2m − 1) (4m − 1) !

=
(

λ − 1

λ + 1

)2
π2a4

16

(
1 + 8

π

∞∑
n=1

Snn
∞∑

m=1

(−1)m+1 (πn)4m−2 a8m−4

22m−2 (2m − 1) (4m − 1) !

)
; (3.45)

B(04)∗
� = −C (04)∗

� = λ − 1

λ + 1
a2B(02)∗

0 S� + λ − 1

λ + 1

∞∑
n=1

B(02)∗
n

∞∑
m=1

(−1)m+1 (πna2)4m−1

(2m − 1) (4m − 1) ! (4m − 3) !

×
(

(π�)4m−2 S� +
m∑

k=1

(−1)�+k+1 (4k − 3) !
22k−2

(π�)4m−4k

sinh π�

)

=
(

λ − 1

λ + 1

)2
πa4

4

[
S� + 4

∞∑
n=1

Snn
∞∑

m=1

(−1)m+1 (πn)4m−2 a8m−4

(2m − 1) (4m − 1) ! (4m − 3) !

×
(

(π�)4m−2 S� +
m∑

k=1

(−1)�+k+1 (4k − 3) !
22k−2

(π�)4m−4k

sinh π�

)]
. (3.46)
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Consequently, the (04) approximation takes the following form:

u(04)
1 =

(
λ − 1

λ + 1

)2
π2a4

16

(
1 + 8

π

∞∑
n=1

Snn
∞∑

m=1

(−1)m+1 (πn)4m−2 a8m−4

22m−2 (2m − 1) (4m − 1) !

)(
∂u0
∂x

ξ + ∂u0
∂y

η

)

+
(

λ − 1

λ + 1

)2
πa4

4

[ ∞∑
�=1

S� + 4
∞∑

�=1

S�

∞∑
n=1

Snn
∞∑

m=1

(−1)m+1 (π2n�
)4m−2

a8m−4

(2m − 1) (4m − 1) ! (4m − 3) !

+4
∞∑

�=1

1

sinh π�

∞∑
n=1

Snn
∞∑

m=1

(−1)m+1 (πn)4m−2 a8m−4

(2m − 1) (4m − 1) ! (4m − 3)
!

m∑
k=1

(−1)�+k+1 (4k − 3) ! (π�)4m−4k

22k−2

]

×
[
∂u0
∂x

(sinh π�ξ cos π�η − cosh π�η sin π�ξ) + ∂u0
∂y

(sinh π�η cos π�ξ − cosh π�ξ sin π�η)

]
.

(3.47)

4 The refined Maxwell formula

A further extension of an iteration process can be carried out in an analogous way, and an averaging procedure
of the following equations

(
1 − a2 + λa2

) (∂2u0
∂x2

+ ∂2u0
∂y2

)
+ 1∣∣�∗

i

∣∣

⎡
⎢⎢⎣
∫∫

� +
i

(
∂2u+ (01)

1

∂x∂ξ
+ ∂2u+ (01)

1

∂y∂η
+ ∂2u(02)

1

∂x∂ξ
+ ∂2u(02)

1

∂y∂η

+∂2u+ (03)
1

∂x∂ξ
+ ∂2u+ (03)

1

∂y∂η
+ ∂2u(04)

1

∂x∂ξ
+ ∂2u(04)

1

∂y∂η
+ ∂2u+ (05)

1

∂x∂ξ
+ ∂2u+ (05)

1

∂y∂η

+∂2u(06)
1

∂x∂ξ
+ ∂2u(06)

1

∂y∂η
+ ...

)
dξ dη + λ

∫∫

� −
i

(
∂2u− (01)

1

∂x∂ξ
+ ∂2u− (01)

1

∂y∂η
+ ∂2u(02)

1

∂x∂ξ
+ ∂2u(02)

1

∂y∂η

+∂2u− (03)
1

∂x∂ξ
+ ∂2u− (03)

1

∂y∂η
+ ∂2u(04)

1

∂x∂ξ
+ ∂2u(04)

1

∂y∂η
+ ∂2u− (05)

1

∂x∂ξ
+ ∂2u− (05)

1

∂y∂η

+∂2u(06)
1

∂x∂ξ
+ ∂2u(06)

1

∂y∂η
+ ...

)
dξ dη

]
= F (4.1)

yields the following effective coefficients of the thermal conductivity:

q = 1 + 2
λ − 1

λ + 1

πa2

4
+ 2

(
λ − 1

λ + 1

πa2

4

)2

+ 2

(
λ − 1

λ + 1

πa2

4

)3

+ ...

+
(

λ − 1

λ + 1

)3
π2a6

4

(
1 + λ − 1

λ + 1

πa2

4
+ ...

)2 ∞∑
�=1

S��

∞∑
n=1

(−1)n+1 (π�)4n−2 a8n−4

22n−1 (2n − 1) (4n − 1) !

×
⎛
⎝

∞∑
�=1

S�� + πa2

8

∞∑
�=1

S��

∞∑
j=1

S j j
∞∑

m=1

(−1)m+1 (π2� j
)4m−2

a8m−4

(2m − 1) (4m − 1) ! (4m − 3) !

+
(

λ − 1

λ + 1

)4
π3a8

16

(
1 + λ − 1

λ + 1

πa2

4
+ ...

)2 ∞∑
�=1

�

∞∑
j=1

S j j
∞∑

m=1

(−1)m+1 (π j)4m−2 a8m−4

(2m − 1) (4m − 1) ! (4m − 3)

×
(

(π�)4m−2 S� +
m∑

k=1

(−1)�+k+1 (4k − 3) !
22k−2

(π�)4m−4k

sinh π�

) ∞∑
n=1

(−1)n+1 (π�)4n−2 a8n−4

22n−1 (2n − 1) (4n − 1) ! ... . (4.2)
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Observe that the inverse procedure of the series under the condition a � 1,

1 + 2
λ − 1

λ + 1

πa2

4
+ 2

(
λ − 1

λ + 1

πa2

4

)2

+ 2

(
λ − 1

λ + 1

πa2

4

)3

+ ...+,

employed into formula (4.2) yields the known MF formula

qMF =
λ
(
1 + πa2

4

)
+ 1 − πa2

4

λ
(
1 − πa2

4

)
+ 1 + πa2

4

. (4.3)

Indeed, we have

qMF =
λ
(
1 + πa2

4

)
+ 1 − πa2

4

λ
(
1 − πa2

4

)
+ 1 + πa2

4

= (λ + 1) + (λ − 1) πa2
4

(λ + 1) − (λ − 1) a2
πa2

4
= 1 + λ−1

λ+1
πa2
4

1 − λ−1
λ+1

πa2
4

=
(
1 + λ − 1

λ + 1

πa2

4

) (
1 + λ − 1

λ + 1

πa2

4
+
(

λ − 1

λ + 1

πa2

4

)2

+ ...

)

= 1 + 2
λ − 1

λ + 1

πa2

4
+ 2

(
λ − 1

λ + 1

πa2

4

)2

+ 2

(
λ − 1

λ + 1

πa2

4

)3

+ ... .

Therefore, employment of the SAM allows to show analytically that the main term of the asymptotic series of
the effective parameter of heat conductivity, in the case of cylindrical inclusions with circular cross sections
having small sizes, yields the Maxwell formula (MF) and coincides both with the upper Hashin–Shtrikman
bounds for 0 ≤ λ ≤ 1 and with the lower Hashin–Shtrikman bounds for 1 ≤ λ < ∞.

The first two nonzero correcting terms in the MF formula, accounting for the following approximation

1 + λ − 1

λ + 1

πa2

4
+
(

λ − 1

λ + 1

πa2

4

)2

+ ... = 1

1 − λ−1
λ+1

πa2
4

= λ + 1

λ
(
1 − πa2

4

)
+ 1 + πa2

4

for a → 0

and based on the approximation (4.2), take the following form:


 =
(

λ − 1

λ + 1

)3
π2a6

4

(λ + 1)2(
λ
(
1 − πa2

4

)
+ 1 + πa2

4

)2
∞∑

�=1

S��

∞∑
n=1

(−1)n+1 (π�)4n−2 a8n−4

22n−2 (2n − 1) (4n − 1) !

+
(

λ − 1

λ + 1

)4
π3a8

16

(λ + 1)2(
λ
(
1 − πa2

4

)
+ 1 + πa2

4

)2
∞∑

�=1

�

∞∑
j=1

S j j
∞∑

m=1

(−1)m+1 (π j)4m−2 a8m−4

(2m − 1) (4m − 1) ! (4m − 3)

×
(

(π�)4m−2 S� +
m∑
k=1

(−1)�+k+1 (4k − 3) !
22k−2

(π�)4m−4k

sinh π�

) ∞∑
n=1

(−1)n+1 (π�)4n−2 a8n−4

22n−1 (2n − 1) (4n − 1) ! . (4.4)

Consequently, the final form of the effective heat transfer coefficient treated as the generalized (N-iterated)
solution of the SAM problem is recast in the following form

qSAM (N ) =
λ
(
1 + πa2

4

)
+ 1 − πa2

4

λ
(
1 − πa2

4

)
+ 1 + πa2

4

+
(

λ − 1

λ + 1

)3
π2a6

4

(λ + 1)2(
λ
(
1 − πa2

4

)
+ 1 + πa2

4

)2

×
(


1 + λ − 1

λ + 1

πa2

4

2

)

= qMF + λ − 1

λ + 1

π2a6

4

(λ − 1)2(
λ
(
1 − πa2

4

)
+ 1 + πa2

4

)2
(


1 + λ − 1

λ + 1

πa2

4

2

)
, (4.5)



I. I. Andrianov et al.

where


1 =
∞∑

�=1

S��

∞∑
n=1

(−1)n+1 (π�)4n−2 a8n−4

22n−2 (2n − 1) (4n − 1) ! ;


2 =
∞∑

�=1

�

∞∑
j=1

S j j
∞∑

m=1

(−1)m+1 (π j)4m−2 a8m−4

(2m − 1) (4m − 1) ! (4m − 3) !

×
(

(π�)4m−2 S� +
m∑
k=1

(−1)�+k+1 (4k − 3) !
22k−2

(π�)4m−4k

sinh π�

) ∞∑
n=1

(−1)n+1 (π�)4n−2 a8n−4

22n−1 (2n − 1) (4n − 1) ! . (4.6)

It should be noticed that the series occurring in (4.4) of the form

T (i) =
∞∑
n=1

Snn
i

are rapidly convergent because the following estimation holds:

T (i)
n+1

T (i)
n

= S(i)
n+1 (n + 1)i

S(i)
n ni

∼ e−π .

Thus, summing the series with regard to 5 and 100 terms of the series terms T (3), T (5), T (7), we get

T (3) (5) ≈ 0.0190558992; T (3) (100) ≈ 0.0190558917;
T (5) (5) ≈ 0.0177068353; T (5) (100) ≈ 0.0177065687;
T (7) (5) ≈ 0.0138798059; T (7) (100) ≈ 0.0138704300.

In the case of small sizes of the inclusions, the obtained asymptotic formula of the effective parameter qSAM (N)

(4.5) satisfies the Keller’s theorem [8]

qSAM (N ) (λ) = q−1
SAM (N )

(
λ−1) ,

if one considers accuracy of the series of order a14.
Indeed, let us recast formulas (4.6) into the following form:


1 =
∞∑

�=1

S��

∞∑
n=1

(−1)n+1 26n−2 �4n−2

(2n − 1) (4n − 1) !
(

πa2

4

)4n−2

=
∞∑
n=1

δ
(n)
1

(
πa2

4

)4n−2

;


2 =
∞∑

m=1

∞∑
n=1

(−1)m+n+2 π4(m+n−1)a8(m+n−1)

(2m − 1) (4m − 1) ! (4m − 3) ! 22n−1 (2n − 1) (4n − 1) !
∞∑

�=1

�4n−1
∞∑
j=1

Sj j
4m−1

×
(

(π�)4m−2 S� +
m∑
k=1

(−1)�+k+1 (4k − 3) !
22k−2

(π�)4m−4k

sinh π�

)

=
∞∑

m=1

∞∑
n=1

δ
(mn)
2

(
πa2

4

)4(m+n−1)

, (4.7)

where

δ
(n)
1 = (−1)n+1 26n−2

(2n − 1) (4n − 1) !
∞∑

�=1

S��
4n−1;

δ
(mn)
2 = (−1)m+n+2 28m+6n−7

(2m − 1) (4m − 1) ! (4m − 3) ! (2n − 1) (4n − 1) !
∞∑

�=1

�4n−1
∞∑
j=1

Sj j
4m−1
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×
(

(π�)4m−2 S� +
m∑
k=1

(−1)�+k+1 (4k − 3) !
22k−2

(π�)4m−4k

sinh π�

)
. (4.8)

We have

qSAM(N ) (λ) = 1 + λ−1
λ+1

πa2
4

1 − λ−1
λ+1

πa2
4

+
(

λ−1
λ+1

)3
(
1 − λ−1

λ+1
πa2
4

)2
π2a6

4

×
[
δ
(1)
1

π2a4

42
+ δ

(2)
1

π6a12

46
+ ... + λ − 1

λ + 1

πa2

4

(
δ
(11)
2

π4a8

44
+
(
δ
(12)
2 + δ

(21)
2

) π8a16

48
+ ...

)]
∼

∼ 1 + 2
λ − 1

λ + 1

π

4
a2 + 2

(
λ − 1

λ + 1

π

4

)2

a4 + 2

(
λ − 1

λ + 1

π

4

)3

a6 + 2

(
λ − 1

λ + 1

πa2
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Comparison of relations (4.9) and (4.10) implies the following conclusion. In the solutions (4.5), (4.6), found
based on the SAM, the sum of the main part of the asymptotic representation qMF and the first correcting term

1
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1

satisfies the Keller theorem up to the terms of order a2n inclusively for arbitrary vales of n. Though the error
is introduced already by the second correcting term 
2, its order is of a16 for small a.
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Fig. 1 Effective heat transfer coefficient for non-conductive inclusions λ = 0: qSAM(N ) – generalized SAM; qMF – MF; q(0)
as –

asymptotic solutions

Fig. 2 Effective heat transfer coefficient of inclusions with small conductivity λ = 0.05: qSAM(N ) – generalized SAM; qMF –
MF;

5 Analysis of the obtained corrections to the MF

In formula (4.5), theMF relation (4.3) stands for themain part of the asymptotic form of the effective parameter,
and 
1, 
2 play the role of correcting terms of order a10 and higher, and they are defined via series regarding
m and n. For instance, for n = 1, the order of correcting term is a10.

Let us consider the case study, when we take n = 2 in formulas (4.6) and include the terms of order a18,
and we estimate through formulas (4.5), (4.6) the effective heat transfer parameter for various values of the
sizes of inclusions and their conductivity (see results reported in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9).

6 Numerical results

The so far reported graphical results allow to formulate the following observations:

1. MF describes well the averaged parameter of a structure for small and average sizes of inclusions (up to
a ≈ 0.7) for arbitrary inclusions accounting for the limiting cases (λ = 0 and λ → ∞). In the latter case,
computations carried out with MF and generalized SAM practically coincide (Table 1).

2. In the case when the conductivity of the matrix and the inclusion is of the same order (from λ ≈ 0.5 up to
λ ≈ 2) the computational results regarding the effective parameter estimated due to MF and SAM are very
close to each other (Table 2) in the whole interval of the inclusion size (0 ≤ a ≤ 1).
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Fig. 3 The effective heat transfer coefficient of the heat transfer for the case of conductivity of inclusions of the order of the
matrix conductivity: qSAM(N ) – generalized SAM; qMF – MF for λ = 0.5 and for λ = 2

Fig. 4 Effective heat transfer coefficient for inclusions with high conductivity λ = 20: qSAM(N ) – generalized SAM; qMF – MF

Fig. 5 Effective heat transfer coefficient for absolute conductive inclusions λ → ∞: qSAM(N ) – generalized SAM; qMF – MF;

q(∞)
as – asymptotic solution
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Fig. 6 Effective heat transfer coefficient for inclusions of small size a = 0.3: qSAM(N ) – SAM; qMF – MF

Fig. 7 Effective heat transfer coefficient for inclusions of average size a = 0.7: qSAM(N ) – generalized SAM; qMF – MF

Fig. 8 Effective heat transfer coefficient for large size inclusions a = 0.9: qSAM(N ) – generalized SAM; qMF – MF; q(∞)
asf –

asymptotic formula (49) from [7]; q(0)
asf – asymptotic formula (49) from [7], transformed on the basis of Keller’s theorem [8]
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Fig. 9 Effective heat transfer coefficient for the case of nearly limiting value for the inclusions size a = 0.99: qSAM(N ) –

generalized SAM; qMF – MF; q(∞)
asf – asymptotic formula (49) from [7]; q(0)

asf – asymptotic formula (49) from [7], transformed on
the basis of Keller’s theorem [8]

Table 1 Conductivity of inclusions: MF qMF versus SAM qSAM(N ) for different a (λ = 0 and λ → ∞)

Size of inclusions a MF qMF SAM qSAM(N ) Error qMF−qSAM(N )

qMF
· 100%

Conductivity of inclusions λ = 0
0.1 0.9844 0.9844 0.7735 × 10−9

0.2 0.9391 0.9391 0.7928 × 10−6

0.3 0.8680 0.8680 0.4589 × 10−4

0.4 0.7767 0.7767 0.8238 × 10−3

0.5 0.6718 0.6717 0.7847 × 10−2

0.6 0.5592 0.5589 0.5065 × 10−1

0.7 0.4442 0.4431 0.2541
Conductivity of inclusions λ = 0.05
0.1 0.9859 0.9859 0.5729 × 10−9

0.2 0.9447 0.9447 0.5870 × 10−6

0.3 0.8798 0.8798 0.3396 × 10−4

0.4 0.7958 0.7958 0.6083 × 10−3

0.5 0.6983 0.6983 0.5770 × 10−2

0.6 0.5926 0.5924 0.3694 × 10−1

0.7 0.4835 0.4826 0.1826
Conductivity of inclusions λ = 20
0.1 1.0143 1.0143 −0.5729 × 10−9

0.2 1.0585 1.0585 −0.5870 × 10−6

0.3 1.1366 1.1366 −0.3397 × 10−4

0.4 1.2566 1.2566 −0.6087 × 10−3

0.5 1.4321 1.4321 −0.5782 × 10−2

0.6 1.6875 1.6881 −0.3717 × 10−1

0.7 2.0684 2.0722 −0.1855
Conductivity of inclusions λ → ∞
0.1 1.0158 1.0158 −0.7735 × 10−9

0.2 1.0649 1.0649 0.7928 × 10−6

0.3 1.1521 1.1521 −0.4590 × 10−4

0.4 1.2874 1.2875 −0.8243 × 10−3

0.5 1.4886 1.4888 −0.7865 × 10−2

0.6 1.7884 1.7893 −0.5100 × 10−1

0.7 2.2512 2.2570 −0.2586
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Table 2 Conductivity of inclusions: MF qMF versus SAM qSAM(N ) for different a (λ ∈ (0.5; 2)

Size of inclusions a MF qMF SAM qSAM(N ) Error qMF−qSAM(N )

qMF
· 100%

Conductivity of inclusions λ = 0.5
0.1 0.9948 0.9948 0.2865 × 10−10

0.2 0.9793 0.9793 0.2934 × 10−7

0.3 0.9540 0.9540 0.1692 × 10−5

0.4 0.9196 0.9196 0.3009 × 10−4

0.5 0.8771 0.8771 0.2808 × 10−3

0.6 0.8277 0.8277 0.1745 × 10−2

0.7 0.7726 0.7725 0.8200 × 10−2

0.8 0.7130 0.7128 0.3140 × 10−1

0.9 0.6501 0.6494 0.1029
1.0 0.5850 0.5833 0.2978
Conductivity of inclusions λ = 2
0.1 1.0052 1.0052 −0.2865 × 10−10

0.2 1.0212 1.0212 −0.2934 × 10−7

0.3 1.0483 1.0483 −0.1692 × 10−5

0.4 1.0874 1.0874 −0.3009 × 10−4

0.5 1.1401 1.1401 −0.2810 × 10−3

0.6 1.2081 1.2081 −0.1749 × 10−2

0.7 1.2943 1.2944 −0.8247 × 10−2

0.8 1.4026 1.4030 −0.3181 × 10−1

0.9 1.5383 1.5399 −0.1056
1.0 1.7093 1.7146 −0.3129

Table 3 Conductivity of inclusions: MF qMF versus SAM qSAM(N ) for different a(λ > 10 or λ < 0.1)

Size of inclusions a MFqMF SAM qSAM(N ) Error qMF−qSAM(N )

qMF
· 100%

Conductivity of inclusions λ = 0.05
0.80 0.3748 0.3719 0.7610
0.85 0.3215 0.3167 1.4899
0.90 0.2694 0.2616 2.8720
0.95 0.2185 0.2065 5.5130
1.00 0.1692 0.1510 10.7180
Conductivity of inclusions λ = 20
0.80 2.6683 2.6893 −0.7881
0.85 3.1102 3.1590 −1.5670
0.90 3.7124 3.8268 −3.0837
0.95 4.5759 4.8543 −6.0841
1.00 5.9108 6.6355 −12.2612

Table 4 Conductivity of inclusions: MF qMF versus SAM qSAM(N ) for (a → 1, λ → ∞ or λ → 0)

Size of inclusions a MF qMF SAM qSAM(N ) Asymptotic solution q(0)
as Error q(0)

as −qMF

q(0)
as

· 100% Error q(0)
as −qSAM(N )

q(0)
as

· 100%

Conductivity of inclusions λ = 0
0.80 0.3310 0.3274 0.3232 −2.4176 −1.3028
0.85 0.2760 0.2699 0.2616 −5.4749 −3.1765
0.90 0.2224 0.2127 0.1974 −12.6438 −7, 7561
0.95 0.1704 0.1555 0.1263 −34.9469 −23.1268
0.99 0.1301 0.1095 0.0497 −161.8549 −120.3139
Conductivity of inclusions λ → ∞
0.80 3.0214 3.0555 3.0944 2.3605 1.2558
0.85 3.6237 3.7072 3.8221 5.1908 3.0064
0.90 4.4971 4.7082 5.0657 11.2246 7.05759
0.95 5.8686 6.4419 7.9196 25.8968 18.6587
0.99 7.6869 9.0895 20.1286 61.8019 54.8427
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3. In the case of large inclusion size (a > 0.8) as well as either large (λ > 10) or small (λ < 0.1) conductivity,
the correcting term yielded by SAM (Table 3) plays an essential role.

4. In the case of large size of inclusions close to the limiting value (a → 1), and for large (λ → ∞) and small
(λ → 0) limiting values of the conductivity, neither MF nor SAM offer a reliable picture of the behavior
of the effective parameter. This observation is confirmed by the divergence of the results shown in Table 4
versus the values of the known asymptotic solution (1.2) and its counterpart formula (1.3).

7 Concluding remarks

In this work, we have proposed new formulas for estimation of the effective coefficient of thermal conductivity
based on the method of asymptotic homogenization. Our research allows for the following conclusions:

1. The MF asymptotic analysis of a two-phase composite model for the case of a composite structure with
periodically distributed cylindrical inclusions of circular cross sections was carried out.

2. The solution has been constructed with the help of averaging theory SAM and PA.
3. Employment of the generalized (N-iterations) SAM procedure allowed to conclude that for small sizes of

inclusions, the main part of the asymptotic series of the effective heat transfer parameter coincides with the
MF. It has been illustrated that development of the correcting term into series with regard to the MF begins
with terms of order a10. We have proposed relations allowing for improvement of the results up to terms of
order a18.

4. Analysis of the solution based on the generalized SAM procedure yielded the following important issues:
(a) In the case of small and average sizes of inclusions and their arbitrary conductivity, the MF formula

represents well the averaged parameter of the structure; the computation results practically coincide
with the solutions obtained by the SAM.

(b) In the case of composites with conductivity of inclusions close to the matrix conductivity, the compu-
tational results of the effective parameter estimated through MF and SAM are close to each other in
the whole interval of the inclusion sizes.

(c) It is recommended to take into account the correcting term given by the N-iteration SAM solution
while investigating the effective conductivity of structures with large size of inclusions or their small
conductivity.

(d) In the case of the limiting large sizes of inclusions and conductivity, both MF and SAM do not offer
reliable results. Namely, they do not describe neither qualitatively nor quantitatively the behavior of
the effective parameter and physically result in the emergence of an infinite cluster.
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