

25th International Scientific Conference October 6–8

Proceedings Part II

ISSN 1822-296 X (print) ISSN 2351-7034 (online)

KAUNAS UNIVERSITY OF TECHNOLOGY KLAIPĖDA UNIVERSITY IFT₀MM NATIONAL COMMITTEE OF LITHUANIA LITHUANIAN SOCIETY OF AUTOMOTIVE ENGINEERS THE DIVISION OF TECHNICAL SCIENCES OF LITHUANIAN ACADEMY OF SCIENCES VILNIUS GEDIMINAS TECHNICAL UNIVERSITY

TRANSPORT MEANS 2021

Sustainability: Research and Solutions

PROCEEDINGS OF THE 25th INTERNATIONAL SCIENTIFIC CONFERENCE

PART II

October 06-08, 2021 Online Conference - Kaunas, Lithuania

CONFERENCE IS ORGANIZED BY

Kaunas University of Technology, In cooperation with Klaipeda University, IFToMM National Committee of Lithuania, Lithuanian Society of Automotive Engineers, The Division of Technical Sciences of Lithuanian Academy of Sciences, Vilnius Gediminas Technical University

The proceedings of the 25th International Scientific Conference Transport Means 2021 contain selected papers of 9 topics: Aviation, Automotive, Defence Technologies, Fuels and Combustion, Intelligent Transport Systems, Railway, Traffic, Transport Infrastructure and Logistics, Waterborne Transport.

All published papers are peer reviewed.

The style and language of authors were not corrected. Only minor editorial corrections may have been carried out by the publisher.

All rights preserved. No part of these publications may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the permission of the publisher.

SCIENTIFIC EDITORIAL COMMITTEE

Chairman – Prof. V. Ostaševičius, Member of Lithuanian and Swedish Royal Engineering Academies of Sciences, Chairman of IFToMM National Committee of Lithuania

MEMBERS

Prof. H. Adeli, The Ohio State University (USA) Dr. A. Alop, Estonian Maritime Academy of Tallinn University of Technology (Estonia) Dr. S. Bačkaitis, US Transportation Department (USA) Prof. Ž. Bazaras, Department of Transport Engineering, KTU (Lithuania) Prof. M. Bogdevičius, Faculty of Transport Engineering, VGTU (Lithuania) Dr. D. Bazaras, Faculty of Transport Engineering, VGTU (Lithuania) Prof. R. Burdzik, Silesian University of Technology (Poland) Prof. P.M.S.T. de Castro, Porto University (Portugal) Prof. R. Cipollone, L'Aquila University (Italy) Prof. Z. Dvorak, University of Žilina (Slovakia) Prof. A. Fedaravičius, Department of Transport Engineering, KTU (Lithuania) Prof. J. Furch, University of Defence (Czech Republic) Dr. S. Himmetoğlu, Hacettepe University (Turkey) Dr. hab. I. Jacyna-Gołda, Warsaw University of Technology (Poland) Dr. J. Jankowski, Polish Ships Register (Poland) Prof. I. Kabashkin, Transport and Telecommunications Institute (Latvia) Prof. A. Keršys, Department of Transport Engineering, KTU (Lithuania) Prof. Y. Krykavskyy, Lviv Polytechnic National University (Ukraine) Dr. B. Leitner, University of Žilina (Slovakia) Dr. J. Ludvigsen, Transport Economy Institute (Norway) Prof. V. Lukoševičius, Department of Transport Engineering, KTU (Lithuania) Prof. J. Majerčák, University of Žilina (Slovakia) Dr. R. Makaras, Department of Transport Engineering, KTU (Lithuania) Dr. R. Markšaitytė, Vytautas Magnus University (Lithuania) Prof. A. Mohany, Ontario Tech University (Canada) Prof. V. Paulauskas, Department of Marine Engineering, KU (Lithuania) Prof. O. Prentkovskis, Faculty of Transport Engineering, VGTU (Lithuania) Prof. V. Priednieks, Latvian Maritime Academy (Latvia) Dr. L. Raslavičius, Department of Transport Engineering, KTU (Lithuania) Dr. J. Ryczyński, Tadeusz Kosciuszko Military Academy of Land Forces (Poland) Dr. D. Rohacs, Budapest University of Technology and Economics (Hungary) Prof. M. Sitarz, WSB University, (Poland) Prof. D. Szpica, Bialystok University of Technology (Poland) Dr. C. Steenberg, FORCE Technology (Denmark) Dr. A. Šakalys, Faculty of Transport Engineering, VGTU (Lithuania) Dr. Ch. Tatkeu, French National Institute for Transport and Safety Research (France) Prof. M. Wasiak, Warsaw University of Technology (Poland)

Prof. Z. Vintr, University of Defence (Czech Republic)

ORGANIZING COMMITTEE

Chairman – Prof. Ž. Bazaras, Department of Transport Engineering, KTU (Lithuania) Vice-Chairman – Prof. V. Paulauskas, Department of Marine engineering, KU (Lithuania) Vice-Chairman – Prof. A. Fedaravičius, Department of Transport Engineering, KTU (Lithuania) Secretary – Dr. R. Keršys, Department of Transport Engineering, KTU (Lithuania)

MEMBERS

Dr. R. Junevičius, Vice-Dean for Reserach of the Faculty of Transport Engineering, VGTU

Dr. A. Vilkauskas, Dean of the Faculty of Mechanical Engineering and Design, KTU

Dr. R. Makaras, Head of Department of Transport Engineering, KTU

Dr. B. Plačienė, Department of Marine engineering, KU

- Dr. A. Keršys, Department of Transport Engineering, KTU
- Dr. S. Japertas, Department of Transport Engineering, KTU
- Dr. S. Kilikevičius, Department of Transport Engineering, KTU
- Dr. V. Lukoševičius, Department of Transport Engineering, KTU
- R. Džiaugienė, Department of Transport Engineering, KTU
- M. Lendraitis, Department of Transport Engineering, KTU
- R. Litvaitis, Department of Transport Engineering, KTU
- S. Kvietkaitė, Department of Transport Engineering, KTU
- Dr. R. Skvireckas, Department of Transport Engineering, KTU
- Dr. D. Juodvalkis, Department of Transport Engineering, KTU
- Dr. A. Pakalnis, Department of Transport Engineering, KTU
- Dr. V. Dzerkelis, Department of Transport Engineering, KTU

Conference Organizing Committee address:

Kaunas University of Technology, Studentų 56 LT – 51424, Kaunas, Lithuania <u>https://transportmeans.ktu.edu</u>

PREFACE

25th international scientific conference TRANSPORT MEANS 2021 due to the COVID-19 pandemic in the world, for the second time was organized as a virtual event on 06-08 October, 2021. It continues long tradition and reflects the most relevant scientific and practical problems of transport engineering.

The conference aims to provide a platform for discussion, interactions and exchange between researchers, scientists and engineers.

The reports cover a vide variety of topics related to the most pressing issues of today's transport systems development.

The main areas covered in plenary session and in the sections are: design development, maintenance and exploitation of transport means, implementation of advanced transport technologies, development of defense transport, environmental and social impact, advanced and intelligent transport systems, transport demand management, traffic control, specifics of transport infrastructure, safety and pollution problems, integrated and sustainable transport, modeling and simulation of transport systems and elements.

In the invitations to the conference, sent five months before the conference starts, the instructions how to prepare reports and how to model the manuscripts are provided as well as the deadlines for the reports are indicated.

Those who wish to participate in the conference should send the texts of the reports that meet relevant requirements under indicated deadlines. Each report must include: a short description of the idea or technique being presented, a brief introduction orienting to the importance an uniqueness of the submission, a thorough description of research course and comments on the results.

The submissions are matched to the expertise according to the interests and are forwarded to the selected reviewers.

Scientific Editorial Committee revises, groups the properly prepared reports according to the theme and design the conference programme.

The Proceedings are compendium of selected reports presented at the Conference.

Member of Lithuanian and Swedish Royal Engineering Academies of Sciences

Prof. V. Ostaševičius

Road with Fan for Reducing Exposure to Traffic Emissions

M. Biliaiev¹, T. Rusakova², V. Biliaieva³, V. Kozachyna⁴, M. Oladipo⁵

¹Dnipro National University of Railway Transport named after academician V. Lazaryan, Lazaryan 2, 49010, Dnipro, Ukraine, E-mail: <u>biliaiev.m@gmail.com</u>

²Oles Honchar Dnipro National University Haharin av. 72, 49010, Dnipro, Ukraine, E-mail: <u>rusakovati1977@gmail.com</u>
 ³Oles Honchar Dnipro National University Haharin av. 72, 49010, Dnipro, Ukraine, E-mail: <u>biliaiev.m@gmail.com</u>
 ⁴Dnipro National University of Railway Transport named after academician V. Lazaryan, Lazaryan 2, 49010, Dnipro, Ukraine, E-mail: v.kozachyna@gmail.com

⁵Dnipro National University of Railway Transport named after academician V. Lazaryan, Lazaryan 2, 49010, Dnipro, Ukraine, E-mail: <u>biliaiev.m@gmail.com</u>

Abstract

In this paper, a numerical model is proposed for calculating pollution zones near the road, where axial exhaust fans are locally installed at the height of protective barriers, which ensure the intake of emissions from vehicles. The basis of the mathematical model is the equation of convective-diffusion transfer of impurities, which takes into account the intensity of emissions from cars, the unevenness of the air flow, atmospheric diffusion. The calculation of the wind flow velocity field in the presence of cars, an axial fan and a protective screen on the road is carried out on the model of a vortex-free flow of an ideal fluid. For the numerical integration of the mass transfer equation, implicit difference splitting schemes are used. For the numerical solution of the aerodynamic equation, a conditional approximation difference scheme is used. A computer code has been developed that implements the constructed numerical model. The results of computational experiments to assess the effectiveness of axial fans to reduce the level of gas pollution near highways are presented. Scenarios considered: axial fan and protective barrier; additional screen on the barrier; axial fan and two protective barriers

KEY WORDS: noise barrier, axial fan near road, numerical simulation, air pollution

1. Introduction

Currently, there is a steady upward trend in the number of vehicles. The development of transport, construction and maintenance of transport infrastructure increases the burden on the environment and people due to air pollution. Air pollutants, such as carbon monoxide, nitrogen oxides, hydrocarbons or lead, accumulate near sources of pollution, along the road, on the street, in tunnels, at intersections. During the construction and reconstruction of the city districts, technological solutions are needed to reduce the level of harmful substances during the idle operation of the car engine at the stop. Emissions from cars on highways significantly affect the quality of the air.

There are two important tasks within this problem. The first task is to predict the level of air pollution near the highway. The second problem is to minimize the level of air pollution near the highway.

To minimize the level of pollution at the working areas near highways, a number of tools are used, for example [1-5]: the use of vegetation; installation of protective barriers [8-9]; the use of suction devices near the track; the use of special solutions for dust suppression on the highway; the use of a special coating that "neutralizes" the impurity; the use of axial fans located at a certain height from the highway.

For the practical use of a specific means to protect air from pollution near highways, a scientific justification of its effectiveness is needed at the stage of creating a project. Conducting physical experiments to solve this important task requires considerable time to set up and conduct the experiment. Therefore, it is important to have specialized mathematical models that allow to assess quickly the effectiveness of a particular method of protection at the stage of development of a project to protect air from pollution near the highway. This paper considers the construction of a numerical model for the analysis of axial fans efficiency while reducing the level of air pollution near the highway.

2. Statement of the Problem and Its Solution

2.1. Mathematical Model

A city-wide highway with continuous three-lane traffic is considered, the width of one lane is 3.75 m, on one side of the road there are protective screens (barriers) with an axial fan installed at the location of the traffic light, because there is the highest level of *CO* during idle operation of vehicles (Fig. 1). The task is to calculate the zone of air pollution during the emission of pollutants from vehicles, as well as to assess the impact of the axial fan on reducing the concentration of harmful substances behind the screen. Exhaust of polluted air that got into the selection system can be carried out through ventilation pipes by supplying polluted air to the cleaning system [9].

Fig. 1 The scheme of axial fan usage together with a protective barrier: I – the car; 2 – protective barrier; 3 – axial fan; A, B, C, D – boundaries of the calculated domain

The following equations are used to estimate the level of air pollution near the highway, where the protective barrier with an axial fan is located (Fig. 1) [2, 7]:

$$\frac{\partial C}{\partial t} + \frac{\partial uC}{\partial x} + \frac{\partial vC}{\partial y} = \frac{\partial}{\partial x} \left(\mu_x \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu_y \frac{\partial C}{\partial y} \right) + \sum_{i=1}^N Q_i \delta \left(x - x_i \right) \delta \left(y - y_i \right); \tag{1}$$

$$\frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 P}{\partial y^2} = 0 ; \qquad (2)$$

$$u = \frac{\partial P}{\partial x}; \quad v = \frac{\partial P}{\partial y}.$$
(3)

where C - the concentration of impurities in the air, [kg/m3]; μ_x , μ_y - turbulent diffusion coefficients, [m²/s]; u, v - components of the air flow velocity vector, [m/s]; Q_i - impurity emission intensity [kg/(s·m³)]; $\delta(x-x_i)\delta(y-y_i)$ - delta Dirac function; (x_i, y_i) - coordinates of pollutant sources, [m]; P - speed potential; t - time, [s].

The following boundary conditions are set for solving the system of equations Eq. (1) - Eq.(3) - (Fig. 1):

1. $C = C_{entrance}$ or C = 0; $\frac{\partial P}{\partial x}\Big|_{A} = U$ – at the boundary of the inlet of stream A, where U – the known flow

speed;

2.
$$\frac{\partial C}{\partial x}\Big|_{B} = 0$$
; $P = \text{const} - \text{at}$ the boundary B "exit" of the flow;
3. $\frac{\partial C}{\partial y}\Big|_{C,D} = 0$; $\frac{\partial P}{\partial y}\Big|_{C,D} = 0$ – at the impenetrable boundaries C, D ;

4. On all solid walls, taking into account the screen, the body of the car is a condition of impermeability for both concentration and speed potential, depending on the direction of the normal to the surface.

For the moment of time t = 0, the initial condition is written as follows $C_{t=0} = 0$.

The Eq. (1) is used to calculate the impurity concentration field near the highway. Eq. (2) is used together with relations (3) to calculate the air velocity field near the highway, where the protective barrier with the axial fan is located.

2.2. Numerical Model

Consider the methodology for constructing a numerical model based on the equations Eq. (1) – Eq. (2). Numerical integration of modeling equations is carried out on a rectangular difference grid $(x, y)_{i,j} = (i \cdot \Delta x, j \cdot \Delta y)$, $i, j \in \mathbb{Z}$. For numerical integration of the equation Eq. (1) two different schemes are used. Splitting the equation Eq. (1) at the differential level is carried out as follows:

$$\frac{\partial C}{\partial t} + \frac{\partial uC}{\partial x} + \frac{\partial vC}{\partial y} = 0; \qquad (4)$$

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(\mu_x \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu_y \frac{\partial C}{\partial y} \right); \tag{5}$$

$$\frac{\partial C}{\partial t} = \sum Q_i \cdot \delta(x - x_i) \cdot \delta(y - y_i).$$
(6)

Further, the following transformations and approximations of derivatives are performed [2, 7]:

$$\frac{\partial uC}{\partial x} = \frac{\partial u^+C}{\partial x} + \frac{\partial u^-C}{\partial x}; \quad \frac{\partial vC}{\partial y} = \frac{\partial v^+C}{\partial y} + \frac{\partial v^-C}{\partial y}; \quad (7)$$

$$u^{+} = \frac{u + |u|}{2}; \ u^{-} = \frac{u - |u|}{2}; \ v^{+} = \frac{v + |v|}{2}; \ v^{-} = \frac{v - |v|}{2}.$$
(8)

$$\frac{\partial u^{+}C}{\partial x} \approx \frac{u_{i+1,j}^{+}C_{i,j}^{n+1} - u_{i,j}^{+}C_{i-1,j}^{n+1}}{\Delta x} = L_{x}^{+}C^{n+1}; \quad \frac{\partial u^{-}C}{\partial x} \approx \frac{u_{i+1,j}^{-}C_{i+1,j}^{n+1} - u_{i,j}^{-}C_{i,j}^{n+1}}{\Delta x} = L_{x}^{-}C^{n+1}$$
(9)

$$\frac{\partial v^{+}C}{\partial y} \approx \frac{v_{i,j+1}^{+}C^{n+1}_{i,j} - v_{i,j}^{+}C^{n+1}_{i,j-1}}{\Delta y} = L_{y}^{+}C^{n+1}; \frac{\partial v^{-}C}{\partial y} \approx \frac{v_{i,j+1}^{-}C^{n+1}_{i,j+1} - v_{i,j}^{-}C^{n+1}_{i,j}}{\Delta y} = L_{y}^{-}C^{n+1};$$
(10)

$$\frac{\partial}{\partial x}\left(\mu_x \frac{\partial C}{\partial x}\right) \approx \mu_x \frac{C_{i+1,j}^{n+1} - C_{ij}^{n+1}}{\Delta x^2} - \mu_x \frac{C_{ij}^{n+1} - C_{i-1,j}^{n+1}}{\Delta x^2} = M_{xx}^- C^{n+1} + M_{xx}^+ C^{n+1}; \tag{11}$$

$$\frac{\partial}{\partial y} \left(\mu_y \frac{\partial C}{\partial y} \right) \approx \mu_y \frac{C_{i,j+1}^{n+1} - C_{ij}^{n+1}}{\Delta y^2} - \mu_y \frac{C_{ij}^{n+1} - C_{i,j-1}^{n+1}}{\Delta x^2} = M_{yy}^- C^{n+1} + M_{yy}^+ C^{n+1} \,. \tag{12}$$

For Eq. (4) the following splitting scheme is used:

- first step,
$$\frac{C_{i,j}^{k} - C_{i,j}^{n}}{\Delta t} + L_{x}^{+}C^{k} + L_{y}^{+}C^{k} = 0;$$

- the second step,
$$\frac{C_{i,j}^{n+\frac{3}{4}} - C_{i,j}^{n+\frac{1}{2}}}{\Delta t} + L_{x}^{-}C^{n+\frac{3}{4}} + L_{y}^{-}C^{n+\frac{3}{4}} = 0.$$

For numerical integration of Eq. (5) two-step splitting scheme is used:

$$\frac{C_{i,j}^{n+\frac{3}{4}} - C_{i,j}^{n+\frac{1}{2}}}{\Delta t} = 0.5 \cdot \left(L_{xx}^{-} C^{n+\frac{1}{2}} + L_{xx}^{+} C^{n+\frac{3}{4}} + M_{yy}^{-} C^{n+\frac{1}{2}} + M_{yy}^{+} C^{n+\frac{3}{4}} \right);$$
(13)

$$\frac{C_{i,j}^{n+1} - C_{i,j}^{n+\frac{3}{4}}}{\Delta t} = 0.5 \cdot \left(L_{xx}^{-} C^{n+1} + L_{xx}^{+} C^{n+\frac{3}{4}} + M_{yy}^{-} C^{n+1} + M_{yy}^{+} C^{n+\frac{3}{4}} \right);$$
(14)

Numerical integration of Eq. (6) is carried out by the method of Euler [2, 6]:

$$C_{ij}^{n+1} = C_{ij}^{n} + \Delta t \sum Q_i \cdot \delta(x - x_i) \delta(y - y_i) / \Delta x / \Delta y ; \qquad (15)$$

For numerical integration of the equation an explicit finite-difference scheme of numerical integration is used. Laplace Eq. (2) reduces to an equation of the evolutionary type:

$$\frac{\partial P}{\partial \eta} = \frac{\partial^2 P}{\partial^2 x} + \frac{\partial^2 P}{\partial^2 y},\tag{16}$$

where η is the dummy time, when $\eta \to \infty$, the solution of equation (16) goes to the solution of Laplace Eq. (2). To solve this equation it is necessary to specify the initial condition, the potential field at $\eta = 0$. For example, you can take $P_{\eta=0} = 0$ to the entire calculation area.

Based on the method of numerical integration [2, 6], the calculated dependence for solving Eq. (16) has the form:

640

$$P_{ij}^{n+1} = P_{ij}^{n} + \Delta t \frac{P_{i+1,j}^{n} - 2P_{ij}^{n} + P_{i-1,j}^{n}}{\Delta x^{2}} + \Delta t \frac{P_{i,j+1}^{n} - 2P_{ij}^{n} + P_{i,j-1}^{n}}{\Delta y^{2}},$$
(17)

With the help of this explicit dependence, the velocity potential field in all internal cells of the computational domain is determined. The calculation of the velocity potential ends when the condition: $|P_{ij}^{m+1} - P_{ij}^{m}| \le \varepsilon$, where ε – a small number ($\varepsilon = 0.001$); m – iteration number.

The value of the velocity potential is determined in the centers of the difference cells, the value of the components of the velocity vector is calculated on the sides of the difference cells:

$$u_{ij} = \frac{P_{ij} - P_{i-1,j}}{\Delta x} ; v_{ij} = \frac{P_{ij} - P_{i,j-1}}{\Delta y} .$$
(18)

2.3. Results of Computational Experiments

Based on this numerical model, the code "SCREEN-2A" was created in the FORTRAN programming language, which was used to solve the problem of assessing the level of pollution near the road in the presence of emission source (vehicles), with the location of screens and axial fan.

Various scenarios for the location of vehicles, screens and axial fan were considered. The calculations were performed with the following data: air flow speed 1.7 m/s and 6 m/s, the average intensity of carbon monoxide emissions from vehicles – 0,02 g/(s·m), the geometric dimensions of the area – 12 m along the axis Ox and 10 m along the axis of Oy, which is directed vertically upward. The coordinates of the CO emission source are the coordinates of the exhaust pipe of the car. It is assumed that this is a point source of emission, so in the mathematical model it is given by the delta Dirac function δ_{ij} , and in the numerical model – the position of the difference cell in which the emission source is located, namely $Q_{numerical} = Q(t)_{source} / (\Delta x \Delta y)$, where $Q(t)_{source}$, is the actual CO emission from the car $[g/(s \cdot m)]$, $\Delta x \Delta y$ – the area of the difference cell. The highway is modeled as a set of point sources. Since the two-dimensional model is used, the wind direction is chosen perpendicular to the highway (along the axis Ox). The model problem is solved taking into account the action of the screen as a barrier, cars with dimensions were considered as vehicles: width – 1,7 m, height – 1,6 m, but the calculation program allows to take into account any size of vehicles; turbulent diffusion coefficient 2 m²/s; height of the protective barrier 5 m; air suction speed at the fan inlet 12 m/s.

The effectiveness of reducing air pollution near the highway was studied in the following scenarios:

- barrier + axial fan (scenario 1, Fig. 1);
- barrier + axial fan + additional screen on the barrier (scenario 2, Fig. 2);
- barrier + axial fan + barrier on the other side of the highway (scenario 3, Fig. 3).

Based on the calculations, the following results were obtained. Figure 4 shows the distribution of the *CO* concentration field for two values of wind speed 1.7 m/s (Fig. 4a) and 6 m/s (Fig. 4b). In these figures, each number shows the concentration as a percentage of its maximum value in the calculation area. It can be seen that the efficiency of the fan decreases with increasing wind speed due to the fact that at higher wind speeds there is a "wear" of the plume of pollution from the fan. The level of *CO* concentration behind the barrier is higher at a wind speed of 6 m/s than at 1.7 m/s by 3-5 %.

Fig. 2 Calculation scheme, scenario 2: 1 - car; 2 - noise barrier; 3 - axial fan; 4 - additional screen on the barrier; A, B, C, D - boundaries of the calculated domain

Fig. 3 Calculation scheme, scenario 3: 1 - car; 2 - noise barrier; 3 - axial fan; 4 - barrier on the left side of the highway; A, B, C, D - boundaries of the calculated domain

Fig. 4 Field of CO concentration, scenario 1: l - car, 2 - barrier, $3 - axial fan (<math>C_{CO}$ as a percentage of C_{COmax}), where a - wind speed of 1.7 m/s, $C_{COmax} = 7.6869 \text{ mg/m}^3$; b - wind speed of 6 m/s, $C_{COmax} = 5.2694 \text{ mg/m}^3$

In Fig. 5, a shows the distribution of the *CO* concentration field at a wind speed of 6 m s in the presence of an additional screen on the barrier (scenario 2, Fig. 2). In Fig. 5, b shows the distribution of the *CO* concentration field at a wind speed of 6 m/s in the presence of a barrier on the other side of the highway (scenario 3, Fig. 3). The presence of an additional screen on the barrier (Fig. 5, a) allows to change the geometry of the flow and direct it to a greater height, thereby, due to diffusion to reduce the level of pollutant concentration behind the barrier. The usage of barrier on the other side of the road as an additional obstacle to the wind flow reduces the "wear" of the plume of pollution from the fan, thereby facilitating its localization near the fan and more efficient *CO* selection.

Fig. 5 Field of *CO* concentration, scenario 2 and scenario 3: I - car, 2 - barrier, 3 - axial fan (C_{CO} as a percentage of $C_{CO\text{max}}$), where a - wind speed 6 m/s, $C_{CO\text{max}} = 5.1068 \text{ mg/m}^3$ for barrier with screen b - wind speed of 6 m/s, $C_{CO\text{max}} = 9.6927 \text{ mg/m}^3$ two barriers

Fig. 6, a shows the change of *CO* concentration behind the barrier at a height of 1.7 m with time at a wind speed of 1.7 m/s and 6 m/s for scenario 1. It can be seen that the axial fan for large values of wind speed 6 m/s works less efficiently, so additional technological means are needed to reduce the level of pollution and at such wind speeds. It has been proposed to use an additional screen on the barrier (scenario 2), it reduces the wind speed near the fan, redirects the flow in height, which reduces the concentration value behind the barrier by 50%. At the next stage of the study, calculations were made taking into account the establishment of the second barrier on the opposite side of the road (scenario 3), which leads to a decrease in concentration by 80% behind the first barrier, but the maximum level of concentration on the road is much higher than in previous cases, which is harmful to drivers and passengers who are in the cabin during traffic lights on city roads.

Fig. 6 Change in *CO* concentration along the barrier at a height of 1.7 m over time: a – scenario 1, wind speed 1.7 m/s and 6 m/s; b – scenarios 1, 2, 3 for a wind speed of 6 m/s

It can be seen from Fig. 6, b that in scenario 3 the most effective reduction of the impurity concentration behind the barrier takes place. The calculation time of one scenario is 5 s.

3. Conclusions

A numerical model has been developed to determine the effectiveness of reducing air pollution using protective barriers on which an axial fan is installed.

The model is based on the mass transfer equation and the equation for the velocity potential.

A feature of the model is the possibility to take into account the complex geometric shape of the barrier.

The results of computational experiments conducted on the basis of a split numerical model show that with increasing wind speed, the efficiency of the fan decreases.

It is possible to increase the efficiency of this tool by using an additional screen on the protective barrier and an additional barrier on the opposite side of the road.

Refereces

- 1. Zhong, J.; Cai, X.; Bloss, W. 2015. Modelling the dispersion and transport of reactive pollutants in a deep urban street canyon, Environmental Pollution 200: 42-52.
- 2. Biliaiev, M.; et al. 2020. Application of local exhaust systems to reduce pollution concentration near the road, Transport Problems 15(4) Part 1: 137-148. DOI: 10.21307/tp-2020-055.
- 3. Sang, J.J. 2015. A CFD Study of Roadside Barrier Impact on the Dispersion of Road Air Pollution, Asian Journal of Atmospheric Environment 9-1: 22-30. Available at: http://dx.doi.org/10.5572/ajae.2015.9.1.022.
- 4. Deborah M.S. Madalozzo; Alexandre L. Braun and Armando M. Awruch. 2012. A numerical model for pollutant dispersion simulation in canyons, Mecanica Computacional XXXI: 211-235.
- Cheng-Hsin Chang; Jin-Shian Lin; Chii-Ming Cheng; Yung-Shan Hong. 2013. Numerical simulations and wind tunnel studies of pollutant dispersion in the urban street canyons with different height arrangements, Journal of Marine Science and technology 21(2): 119-126.
- 6. Samarsky, A.A.; Mikhailov, A.P. Mathematical Modeling. Moscow: Fizmatlit 2001, 320 p.
- 7. Zgurovsky, M.Z.; Skopetsky, V.V.; Khrushch, V.K.; Biliaiv, M.M. 1997. Numerical modeling of the spread of pollution in the environment. Kiev: Naukova dumka, 368.
- Wonsik, C.; Shishan, Hu; Meilu, He; Kozawa, K. Spatial Heterogeneity of Roadway Pollutant in Los Angeles. URL: http://www.aqmd.gov/docs/default-source/technologyresearch/TechnologyForums/near-road-mitigationmeasures /near-road_mitigation-agenda-presentations.pdf
- 9. Officially reported emission data. EMEP Centre on Emission Inventories and Projections. Available at: https://www.ceip.at/webdab-emission-database/reported-emissiondata

961 Author's Index

A

Adamová V., 771 Aftaniuk A., 627 Aftaniuk V., 627

B

Bambura O., 886 Bažant M., 666 Berdnychenko Yu., 782 Berlov O., 598 Bernát J., 938 Bielec A., 654 Biliaiev M., 598, 638 Biliaieva V., 598, 638 Blatnický M., 562 Bloombergs I., 555, 818 Bondarenko I., 644, 684 Borodulin A., 579 Bratarchuk S., 894 Burmaka I., 579 Buromenska M., 589

С

Capoušek L., 762 Chymshyr V., 695 Chrzan M., 631, 690 Cybulko P., 853 Coskun I., 744 Cúttová M., 831

Č

Čepaitis T., 871 Černý Mich., 826 Černý Mik., 847 Čulík K., 729

D

Dagilis M., 649 Danchuk V., 949 Danylyan A., 695 Demjanenko I., 699 Dižo J., 562 Dobrzinskij N., 802 Drazdauskas M., 890 Dušek J., 622 Dvoracek R., 672 Dvořák P., 711

F

Fandáková M., 584 Fedaravičius A., 766, 787 Fedorov D., 579 Felcan M., 812 Filotenkovas V., 930 Fomin O., 705 Fomina Y., 705 Furch J., 677

G

Gajanova L., 549 Gavrilovs P., 924 Gavura T., 609 Gerlici J., 705, 865 Ginavičienė J., 906 Gogola M., 847 Gogolova M., 729

Н

Hanáková L., 609, 715 Harusinec J., 865 Hoika T., 792 Holub H., 797, 886 Honzek J., 715 Hulínská Š., 807, 826

J

Janak L., 672 Janoskova K., 662 Janura J., 938 Jasas K., 787 Juodvalkis D., 658, 902

K

Kalivodová M., 715 Kalnina R., 699 Kameníková I., 777 Kasanický G., 882, 938 Kaśkosz K., 943 Kaštaunienė L., 835 Kavan Š., 622 Keršys A., 644 Keršys R., 604, 684 Kharuta V., 797 Kilikevičius S., 649, 766 Kyrychenko H., 782 Kiris O., 627 Klyus O., 871, 890 Kolla E., 729, 771 Konečný V., 677 Kordek J., 584 Korecki Z., 792 Kornaszewski M., 631, 690 Koshel O., 589 Košťálová J., 567 Kovtanets M., 755, 859 Kovtanets T., 859,755 Kozachyna V., 598, 638 Kozicki B., 734 Kral P., 662 Kraus J., 807, 826

Kravchenko K., 865 Kravchenko O., 562, 865 Kravchenko S., 555, 818, 894 Kubal'ák S., 847 Kudela P., 584 Kulbovskyi I., 797, 886 Kuleshov N., 555, 818, 894 Kvietkaitė S., 766

L

Lebedevas S., 871, 890 Leitner B., 593 Lendraitis M., 739 Lovska A., 705 Ľupták V., 842 Lusiak T., 744 Luskova M., 593

M

Majerova J., 549 Maliuha E., 918 Maňas P., 711 Mashykhina P., 598 Maslov I., 695 Massel A., 750 Matyáš R., 609, 715 Mitkow Sz., 734

Ν

Nadanyiova M., 549 Neduzha L., 604, 644, 684 Novák A., 744 Novák Sedláčková A., 616 Nowakowski J., 654 Nozhenko V., 755

0

Oladipo M., 638 Olexa P., 609 Ondruš J., 729, 812, 847

Р

Pająk M., 573 Palčák M., 584 Panova N., 555, 818, 894 Pavelek R., 672 Pečman J., 842 Petrychenko O., 579 Plačienė B., 835 Pniewski R., 631, 690 Polanecka A., 877 Popardovská E., 831 Prosvirova O., 755, 859

R

Radkevich M., 589

Raynov A., 918 Rapalis P., 955 Rédl M., 812 Remencová T., 616 Rusakova T., 638

S

Sapronova S., 589, 886 Seitl M., 777 Sembaev N., 924 Sergienko O., 755, 859 Shcherbyna R., 782 Shestakov V., 555, 818, 894 Skvireckas R., 902 Snížková K., 609 Socha V., 609, 715 Soczówka A., 573 Sprogytė I., 906 Steišūnas S., 721 Strelko O., 782 Suraja K., 699 Survila A., 787 Szczucka - Lasota B., 853

Š

Šilas G., 955 Štoller J., 711

Т

Taraban S., 949 Tylova G., 672 Tymoshchuk O., 797 Tiron-Vorobiova N., 695 Tyshchenko S., 598 Titov D., 555 Tiutkin O., 604 Tkachenko V., 589 Tkachuk M., 797 Tlučhoř T., 807

V

Vaičiūnas G., 721, 911 Vaitkus A., 930 Valionienė E., 835 Vertal' P., 882, 938 Vichova K., 672 Vyčítal T., 666

W

Węgrzyn T., 853

Ζ

Zaripov R., 924 Zýka J., 744

963

Contents

Preface	548
J. Majerova, M. Nadanyiova, L. Gajanova, Before and after COVID-19 car brands: Longitudinal Study of Car Brands Value Sources in Slovak Republic	549
N. Kuleshov, S. Kravchenko, V. Shestakov, I. Bloomberg, D. Titov, N. Panova. Modelling the Overall, Mass and Aerodynamic Characteristics of the First and Second Stages of the System for Launching Micro- and Nanosatellites into Low Earth Orbits	555
M. Blatnický, J. Dižo, O. Kravchenko. Design of a Track Chassis of the Locust 1203 Skid-steer Loader	562
J. Košťálová. Tactile Modifications at the Platforms with Rail – Bus Transfer Hubs	567
A. Soczówka, M. Pająk. Infrastructural and Organizational Problems of Suburban Trams in Łódź after 1989	573
I. Burmaka, A. Borodulin, D. Fedorov, O. Petrychenko. External Control of the Divergence Process Taking into Account the Form of the Safety Domain	579
P. Kudela, M. Fandáková, M. Palčák, J. Kordek. Utilization of Modern Methods for Documentation of Traffic Accidents in Road Transport	584
O. Koshel, S. Sapronova, V. Tkachenko, M. Buromenska, M. Radkevich. Research of Freight Cars Malfunctions in Operation	589
M. Luskova, B. Leitner. Increasing Resilience of Critical Infrastructure Subjects Providing Transport Services	593
M. Biliaiev, V. Kozachyna, V. Biliaieva, O. Berlov, P. Mashykhina, S. Tyshchenko. Watering of Cargo for Reducing Dust Emissions from Coal Wagon	598
O. Tiutkin, R. Keršys, L. Neduzha. Comparative Analysis of Options for Strengthening the Railway Subgrade with Vertical Elements	604
L. Hanáková, V. Socha, K. Snížková, T. Gavura, P. Olexa, R. Matyáš. Influence of Fatigue on Pilot's Physical Activity During 24-hour Experiments	609
A. Novák Sedláčková, T. Remencová. Adoption of Digital Technologies at Regional Airports in the Slovak Republic	616
Š. Kavan, J. Dušek. Selected Elements of Railway Security in the Czech Republic	622
V. Aftaniuk, O. Kiris, A. Aftaniuk. Numerical Study of Gas Flows in the Diffuser Blades of a Marine Engine Turbocharger	627
M. Kornaszewski, R. Pniewski, M. Chrzan. Acquisition of Practical Knowledge During Trainings in Poland by Railway Traffic Specialists	631
M. Biliaiev, T. Rusakova, V. Biliaieva, V. Kozachyna, M. Oladipo. Road with Fan for Reducing Exposure to Traffic Emissions	638
I. Bondarenko, A. Keršys, L. Neduzha. Assessment of the Railway Track Deformability Behaviour as the Parameter of Operational Availability Function	644
M. Dagilis, S. Kilikevičius. Development of Aeroservoelastic Analysis Method for High Flexibility Aircraft	649
A. Bielec, J. Nowakowski. Oil Spectrometric Analysis as a Monitoring Tool in the Wear of an Aircraft Piston Engine	654

D. Juodvalkis, Research of the ABS Effect on Car Braking Distance under Different Conditions	658
D. Judivalkis. Research of the ADS Effect on Car Diaking Distance under Different Conditions	058
P. Kral, K. Janoskova. Evaluation of Suburban Bus Transport Performance in a Selected Region of the Slovak Republic During the Covid-19	662
T. Vyčítal, M. Bažant. Algorithm for Train Overtaking at Railway Stations within Railway Line Simulation Models with Parameter Fine-tuning	666
R. Dvoracek, R. Pavelek, L. Janak, G. Tylova, K. Vichova. Optimization of the Intersection with Regard to Safety in Mikulov	672
J. Furch, V. Konečný. Product and its Life Cycle Cost Analysis	677
I. Bondarenko, R. Keršys, L. Neduzha. Studying of Dynamic Parameters Impulse Impact of the Vehicle Taking into Account the Track Stiffness Variations	684
R. Pniewski, M. Chrzan, M. Kornaszewski. Fuzzy Logic Inference in the Diagnosis and Maintenance of Railway Traffic Control Systems	690
A. Danylyan, N. Tiron-Vorobiova, I. Maslov, V. Chymshyr. Ways to Improve the Cooling System of the Main Engines of Ship	695
R. Kalnina, I. Demjanenko, K. Suraja. Perspective of Sustainable Shipping – Eco-ships	699
O. Fomin, J. Gerlici, A. Lovska, Y. Fomina. Dynamic Loading Determination of the Supporting Structure of the Hopper Wagon Having Elastic Elements in the Center Sill	705
P. Dvořák, P. Maňas, J. Štoller. Vehicle Security Barriers for Building Protection	711
R. Matyáš, V. Socha, L. Hanáková, J. Honzek, M. Kalivodová. Safety Study of Operation on More than One Type Under Air Operator Certificate	715
G. Vaičiūnas, S. Steišūnas. Study of Dynamics Characteristics and Comfort Parameters of Passenger Car with Independently Rotating Wheels	721
J. Ondrus, E. Kolla, K. Čulík, M. Gogolova. The Impact of Speedometers on Traffic Safety	729
B. Kozicki, Sz. Mitkow. A Comparative Analysis of the Number of Commodities Transported by Air in European Countries	734
M. Lendraitis. Development of a Composite Flexible Hinge Concept and Its Application to Compliant Structures	739
A. Novák, I. Coskun, J. Zýka, T. Lusiak. Implementation of Smart and Digital Technologies to Aviation	744
A. Massel. Assessment of Railway Infrastructure Development in Central-Eastern Europe Using Taxonomic Method	750
M. Kovtanets, O. Sergienko, V. Nozhenko, O. Prosvirova, T. Kovtanets. Study of the Physical Adhesion Coefficient in the «Wheel-rail» Frictional Contact	755
L. Capoušek. Introduction of Aircraft with Electric Engine into General Aviation	762
S. Kvietkaitė, S. Kilikevičius, A. Fedaravičius. Aerodynamic Analysis of a Rocket Using CFD Techniques	766
V. Adamová, E. Kolla. Analysis of the off-the-shelf Vehicle Cameras within Forensic Videoanalysis Framework	771
I. Kameníková, M. Seitl. Use of Meteorological Data for the Optimization of Cross-Country Soaring	777
H. Kyrychenko, Yu. Berdnychenko, O. Strelko, R. Shcherbyna. Application of the Automated System at the Change of Technology of Work of Reference Stations on the Railway	782

964

A. Fedaravičius, K. Jasas, A. Survila. Investigation of the Image Recognition System for the Short-Range Air Defence System RBS-70 Field Simulator	787
Z. Korecki, T. Hoika. Localization of Airport Protection Systems Against UAVs	792
H. Holub, I. Kulbovskyi, V. Kharuta, M. Tkachuk, O. Tymoshchuk. Methods of Intelligent Data Processing of the System of Control and Diagnostics of Electric Power Transport Objects	797
N. Dobrzinskij. A Review of Options Regarding Improvements in the Performance Parameters of the 'Belarus 112H-01' Mini-Tractor	802
T. Tlučhoř, J. Kraus, Š. Hulínská. The Methodology of Counter-UAS System Comparison	807
M. Rédl, J. Ondruš, M. Felcan. Using Measuring System Viewpointsystem® by Perception of Road Accident	812
S. Kravchenko, N. Kuleshov, V. Shestakov, N. Panova, I. Blumbergs. Comparative Analysis of Possible Aircraft Payload Transportation Method, Suitable for the LatLaunch Reusable Launch Vehicle Operation	818
Mich. Černý, J. Kraus, Š. Hulínská. The Model Proposal of Counter-UAS System Solution	826
E. Popardovská, M. Cúttová. Comparison of Mechanical Properties of Carbon-Based Composites	831
E. Valionienė, B. Plačienė, L. Kaštaunienė. The Multimodal Transport Portfolio: Service Development Research	835
V. Ľupták, J. Pečman. Assessment of the Quality of Connections on the Rail Transport Network: a Case Study	842
M. Gogola, S. Kubaľák, Mik. Černý, J. Ondruš. The Cross-Regional Impact on the Transport Infrastructure of Small Town: the Case Study of Town Senec	847
P. Cybulko, B. Szczucka – Lasota, T. Węgrzyn. Assessment of the Stellite Valve Clearance in a Dual-Fuel CI Engine Powered by Natural Gas and Diesel	853
M. Kovtanets, O. Sergienko, O. Prosvirova, T. Kovtanets. Theoretical and Experimental Studies of Dynamic Loads Influence on the Adhesion Coefficient of Wheel and Rail	859
K. Kravchenko, J. Gerlici, J. Harusinec, O. Kravchenko. Research of the Characteristics of Wheel and Rail Contact under the Influence of Design and Operational Factors	865
S. Lebedevas, T. Čepaitis, O. Klyus. Energy Efficiency Comparative Studies of Organic Rankine Cycle Implementation for a Sea Ferry	871
A. Polanecka. Identification of Illegal Air Transport in the European Regulatory Environment	877
P. Vertal', G. Kasanický. Modeling of Virtual Traffic Situations	882
I. Kulbovskyi, H. Holub, S. Sapronova, O. Bambura. Modeling of Metrological Support of Qualimetric Measurements on Transport	886
M. Drazdauskas, S. Lebedevas, O. Klyus. Comparative Studies of Ammonia Combustion Cycle Parameters in Marine Compression Ignition Engines	890
S. Kravchenko, N. Kuleshov, V. Shestakov, N. Panova, S. Bratarchuk. Integration and Verification Approach of the Metamorphosis Mobile Space Testing Facility	894
D. Juodvalkis, R. Skvireckas. Investigation of the Adhesion of Snow Car Tyres to the Road Surface	902
J. Ginavičienė, I. Sprogytė. Study of Ridesharing Services in Vilnius, Lithuania	906
G. Vaičiūnas. Application of the Clustering Challenge to New Railway Lines	911

A. Raynov, E. Maliuha. The Theory of Leading Lines	918
R. Zaripov, N. Sembaev, P. Gavrilovs. Methodology for Assessing the Ecological Safety of Cars	924
V. Filotenkovas, A. Vaitkus. Modelling of Unbound Base Layer Aggregate Shape and Structure by Discrete Numerical Methods	930
P. Vertal', J. Janura, G. Kasanický, J. Bernát. Development and Application of Mechanism for Real Rollover Crash Tests	938
K. Kaśkosz. Rickshaws as a Sustainable Alternative to Urban Passenger Transport in Szczecin	943
V. Danchuk, S. Taraban. A Hybrid Method for Traffic Flow Forecasting Using Neural Networks and Window Method	949
G. Šilas, P. Rapalis. Review of Methods and Models for Estimating Ship Emissions in Port	955

Transport Means 2021 Sustainability: Research and Solutions Proceedings of the 25th International Scientific Conference (PART II)

> ISSN 1822-296 X (print) ISSN 2351-7034 (online)

Design by Rasa Džiaugienė, Rolandas Makaras, Robertas Keršys, Saulė Kvietkaitė

Cover Design by Publishing House "Technologija"

SL 344. 2021-11-19. 53 printer's sheets (Part II). Edition: 26 copies. Order No. 85. Printing House "Technologija", Studentų 54, LT-51424, Kaunas transportmeans.ktu.edu

ISSN 1822-296X (print) ISSN 2351-7034 (online)