# Sharp Constant in Jackson's Inequality with Modulus of Smoothness for Uniform Approximations of Periodic Functions

## S. A. Pichugov\*

Dnepropetrovsk National Technical University of Railroad Communications Received April 22, 2012

**Abstract**—It is proved that, in the space  $C_{2\pi}$ , for all  $k, n \in \mathbb{N}$ , n > 1, the following inequalities hold:

$$\left(1 - \frac{1}{2n}\right) \frac{k^2 + 1}{2} \le \sup_{\substack{f \in \mathcal{C}_{2\pi} \\ f \neq \text{const}}} \frac{e_{n-1}(f)}{\omega_2(f, \pi/(2nk))} \le \frac{k^2 + 1}{2}.$$

where  $e_{n-1}(f)$  is the value of the best approximation of f by trigonometric polynomials and  $\omega_2(f, h)$  is the modulus of smoothness of f. A similar result is also obtained for approximation by continuous polygonal lines with equidistant nodes.

## DOI: 10.1134/S0001434613050295

Keywords: Jackson's inequality, periodic function, trigonometric polynomial, modulus of smoothness, polygonal line, Steklov mean, Favard sum.

## Suppose that

•  $C_{2\pi}$  is the space of  $(2\pi)$ -periodic real-valued continuous functions f with norm

$$||f|| = \max\{|f(x)| : x \in \mathbb{R}\};\$$

- $e_{n-1}(f) = \inf_{T_{n-1}} ||f T_{n-1}||$  is the value of the best approximation of f in this space by trigonometric polynomials  $T_{n-1}$  of degree at most  $n-1, n \in \mathbb{N}$ ;
- $\omega_2(f,h) = \sup_{|t| \le h} \|\Delta_t^2 f\|$  is the value of the modulus of smoothness of f at a point  $h, h \ge 0$ , where

$$\Delta_t^2 f(x) = f(x+t) + f(x-t) - 2f(x)$$

is the second difference of f at a point x with step t.

**Theorem 1.** For all  $k, n \in \mathbb{N}$ , n > 1, the following inequalities hold:

$$\left(1 - \frac{1}{2n}\right)\frac{k^2 + 1}{2} \le \sup_{\substack{f \in \mathcal{C}_{2\pi} \\ f \neq \text{const}}} \frac{e_{n-1}(f)}{\omega_2(f, \pi/(2nk))} \le \frac{k^2 + 1}{2}.$$
(1)

**Corollary 1.** For all  $k \in \mathbb{N}$ , the following relations hold:

$$\sup_{\substack{n \ f \in \mathcal{C}_{2\pi} \\ f \neq \text{const}}} \sup_{\substack{f \in \mathcal{C}_{2\pi} \\ \sigma_2(f, \pi/(2nk))}} = \frac{k^2 + 1}{2}.$$

<sup>\*</sup>E-mail: s.a.pichugov@mail.ru

## PICHUGOV

Upper bounds for the values of best approximations of functions in terms of the values of their moduli of continuity of various orders are called the *Jackson's inequalities*. Well-known results concerning sharp Jackson inequalities (i.e., inequalities with sharp constants) for functions of one variable can be found in [1]–[8]. In particular, in the case k = 1, inequalities (1) were proved in [9], [10] (upper bound) and [6] (lower bound). Also note the paper [11] in which, for other values of the argument of the modulus of smoothness, upper bounds for sharp constants were obtained.

Suppose that M is an arbitrary subspace in  $C_{2\pi}$  containing constants,

$$e(f; M) = \inf\{\|f - g\| : g \in M\}$$

is the value of the best approximation of f by the subspace M,

$$\mathcal{W}^2 = \{ f \in \mathcal{C}_{2\pi} : f' \in AC, \ f'' \in \mathcal{C}_{2\pi}, \ \|f''\| \le 1 \},\$$

and  $e(\mathcal{W}^2; M)$  is the value of the best approximation of the class  $\mathcal{W}^2$  by the subspace M.

**Lemma 1.** 1) For any f from  $C_{2\pi}$ , the following inequality holds:

$$e(f;M) \le \frac{1}{2} \inf_{h>0} \left( 1 + \frac{2e(\mathcal{W}^2;M)}{h^2} \right) \omega(f,h);$$
 (2)

2) for any  $\delta > 0$ , the following inequalities hold:

$$\frac{\delta^2}{2} \le \sup_{\substack{f \in \mathcal{C}_{2\pi} \\ f \neq \text{const}}} \frac{e(f; M)}{\omega_2(f, (2e(\mathcal{W}^2; M))^{1/2}/\delta)} \le \frac{\delta^2 + 1}{2}.$$
(3)

**Proof of Lemma 1.** For h > 0, suppose that

$$S_h(f,x) = \frac{1}{h} \int_{-h/2}^{h/2} f(x+t) dt$$

is the Steklov mean of f with step h, and

$$\mathcal{S}_{h^2}(f,x) := S_h(\mathcal{S}_h f, x) = \frac{1}{h^2} \int_{-h}^{h} (h - |t|) f(x+t) dt$$

is the Steklov mean of f of second order. Then

$$\begin{aligned} |f(x) - \mathcal{S}_{h^2}(f, x)| &\leq \frac{1}{h^2} \int_0^h (h - t) |\Delta_t^2 f(x)| \, dt, \\ \|f - \mathcal{S}_{h^2} f\| &\leq \frac{1}{h^2} \int_0^h (h - t) \omega_2(f, t) \, dt \leq \frac{1}{2} \, \omega_2(f, h). \end{aligned}$$

Further,

$$\|D^{2}(\mathcal{S}_{h^{2}}f)\| = \left\|\frac{\Delta_{h}^{2}f}{h^{2}}\right\| \leq \frac{\omega_{2}(f,h)}{h^{2}}, \qquad e(\mathcal{S}_{h^{2}}f;M) \leq \frac{1}{h^{2}}\omega_{2}(f,h)e(\mathcal{W}^{2};M).$$

Now, to find an upper bound for the approximation value e(f; M), we use the intermediate approximation of f by smoother functions  $S_{h^2}f$ :

$$e(f;M) \le \|f - \mathcal{S}_{h^2}f\| + e(\mathcal{S}_{h^2}f;M) \le \frac{1}{2} \left(1 + \frac{2}{h^2}e(\mathcal{W}^2;M)\right) \omega_2(f,h).$$
(4)

Since the value of h is arbitrary, we obtain (2). Note that this method was used in [9] to find estimate (4) for the approximation by polynomials.

If we put  $h = (2e(\mathcal{W}^2; M))^{1/2}/\delta$  in (4), then we obtain the upper bound in (3). We obtain the lower bound in (3) by restricting ourselves to the approximation of smooth functions f from  $C_{2\pi}$  and using the inequality  $\omega_2(f, h) \leq ||f''||h^2$ .

Lemma 1 is proved.

**Proof of Theorem 1.** In the case of approximation by trigonometric polynomials using the Akhiezer–Krein–Favard theorem (see, for example, [7]), we obtain

$$\sup_{f \in \mathcal{W}^2} e_{n-1}(f) = \frac{\pi^2}{8n^2},$$
(5)

and then the upper bound in (3) is of the form

$$\sup_{\substack{f \in \mathcal{C}_{2\pi} \\ f \neq \text{const}}} \frac{e_{n-1}(f)}{\omega_2(f, \pi/(2n\delta))} \le \frac{\delta^2 + 1}{2}.$$
(6)

Let us show that, for  $\delta \in \mathbb{N}$ , this estimate cannot be improved for all *n*.

To find lower bounds for the Jackson constants in the construction of the following functions we use an idea of Korneichuk [1], [2], which was realized in [6] for the moduli of smoothness for  $\delta = 1$ .

Let us fix

$$k, n \in \mathbb{N}, \quad n > 1, \qquad \varepsilon \in \left(0, \frac{1}{2}\right],$$

and set

$$x_0 = 0, \qquad x_\nu = \nu h - (n - \nu)\beta, \quad \nu = 1, \dots, n, \qquad h = \frac{\pi}{n}, \qquad \beta \in \left(0, \frac{4\varepsilon}{n^2(k^2 + 1)}\right).$$

By construction,

$$x_{\nu+1} - x_{\nu} = h + \beta, \qquad x_n = \pi$$

Consider an arbitrary function f from  $C_{2\pi}$  satisfying the conditions

$$f(-x) = f(x),$$
  $f(0) = 0,$   $f(x_{\nu}) = (-1)^{\nu+1} \frac{k^2 + 1}{2},$   $\nu = 1, \dots, n.$  (7)

To find a lower bound for  $e_{n-1}(f)$ , we use the polynomial

$$T_{n-1}(x) = \frac{k^2 + 1}{2n} \frac{\sin(n-1/2)x}{2\sin(x/2)}.$$

For  $\nu = 0, 1, ..., n$ , we have (see [1], [2])

$$f(x_{\nu}) - T_{n-1}(x_{\nu}) = (-1)^{\nu+1} \left(\frac{k^2+1}{2} - \frac{k^2+1}{4n}\right) + \mu_{\nu},$$

where  $|\mu_{\nu}| < \varepsilon$ ; hence, taking into account the fact that *f* is even and using the Vallée-Poussin theorem, we obtain

$$e_{n-1}(f) \ge \frac{k^2 + 1}{2} \left(1 - \frac{1}{2n}\right) - \varepsilon.$$
 (8)

Let us now define the function f(x) on the whole axis so that, along with conditions (7), the following condition also holds:

$$\omega_2\left(f,\frac{\pi}{2nk}\right) = 1. \tag{9}$$

First, let us construct f(x) on the closed interval  $[x_1, \gamma]$ , where  $\gamma = (3/2)(h + \beta) - n\beta$  is the midpoint of the closed interval  $[x_1, x_2]$ , specifying it the polygonal line uniquely defined by its values at the nodes:

$$f(\gamma) = 0, \qquad f\left(x_1 + j\frac{h}{2k}\right) = \frac{k^2 + 1}{2} - \frac{j^2}{2}, \quad j = 0, \dots, k,$$
  
$$f\left(x_1 + j\frac{h}{2k} + \frac{\beta}{2}\right) = \frac{k^2 + 1}{2} - \frac{(j+1)^2}{2}, \quad j = 0, \dots, k-1.$$
 (10)

MATHEMATICAL NOTES Vol. 93 No. 6 2013

#### PICHUGOV

Let us continue f(x) to the closed interval  $[\gamma, x_2]$  as an odd function with respect to the point  $\gamma$ :

$$f(\gamma + x) = -f(\gamma - x), \qquad x \in \left[0, \frac{x_2 - x_1}{2}\right].$$
 (11)

Further, we set

$$f(x) = -f(x - h - \beta), \qquad x \in [x_2, \pi],$$
  

$$f(x) = \max\{0; f(2x_1 - x)\}, \qquad x \in [0, x_1],$$
  

$$f(-x) = f(x), \qquad x \in [-\pi; 0],$$
  

$$f(x + 2\pi) = f(x).$$
  
(12)

This defines the continuous  $2\pi$ -periodic function satisfying conditions (7). It is easy to see that condition (9) also holds: since f(x) is a polygonal line, it follows that, to calculate its modulus of smoothness, it suffices to calculate the increments of the function f at its nodes.

Since  $\varepsilon$  is arbitrary, relations (8) and (9) imply the lower bound of the Jackson constant in (1). Theorem 1 is proved.

**Remark 1.** In the proof of Lemmas 1, we did not use the specific properties of the metric of  $C_{2\pi}$ ; in particular, relations (3) are also valid in the space  $L_1[0, 2\pi]$ . Further, the analog (5) of the Akhiezer–Krein–Favard Theorem also holds in  $L_1[0, 2\pi]$  (see, for example, [7]). Therefore, in the space  $L_1[0, 2\pi]$ , the following upper bound similar to (6) is also valid:

$$\sup_{\substack{f \in L_1[0,2\pi]\\f \neq \text{const}}} \frac{e_{n-1}(f)_{L_1}}{\omega_2(f, \pi/(2n\delta))_{L_1}} \le \frac{\delta^2 + 1}{2}.$$

However, we do not know the exact values of the Jackson constants for the moduli of smoothness in this space for any  $\delta > 0$ .

**Remark 2.** Suppose that  $X_{n-1,2}(f)$  are the Favard sums of degree n-1 of order 2 for the function f (see, for example, [7]). Then

$$\mathscr{L}_{n-1}(f) := \mathcal{S}_{(\pi/(2nk))^2} \circ X_{n-1,2}(f)$$

is the best linear method for approximating functions among all linear polynomial methods  $\mathscr{L}_{n-1}$  in the sense that, for any  $k \in \mathbb{N}$ ,

$$\sup_{n} \inf_{\mathscr{L}_{n-1}} \sup_{\substack{f \in \mathcal{C}_{2\pi} \\ f \neq \text{const}}} \frac{\|f - \mathscr{L}_{n-1}(f)\|}{\omega_2(f, \pi/(2nk))} = \sup_{n} \sup_{\substack{f \in \mathcal{C}_{2\pi} \\ f \neq \text{const}}} \frac{\|f - \mathscr{L}_{n-1}(f)\|}{\omega_2(f, \pi/(2nk))} = \frac{k^2 + 1}{2}.$$

This immediately follows from the proof of the upper bound in Theorem 1 and the fact (see, for example, [7]) that

$$e_{n-1}(\mathcal{W}^2) = \sup_{f \in \mathcal{W}^2} ||f - X_{n-1,2}(f)||.$$

It is easy to calculate the multipliers of the method  $\widetilde{\mathscr{L}}_{n-1}$ : if  $f_{\nu}$  are the complex Fourier coefficients of f and

$$\widetilde{\mathscr{L}}_{n-1}(f,x) = \sum_{|\nu| < n} \alpha_k \left(\frac{\nu}{n}\right) f_{\nu} e^{i\nu x},$$

then

$$\alpha_k(t) = 4k^2 \left( \sin \frac{\pi}{4k} t \right)^2 \frac{\cos(\pi t/2)}{(\sin(\pi t/2))^2}, \qquad |t| \le 1.$$

MATHEMATICAL NOTES Vol. 93 No. 6 2013

920

In particular (see [9], [10], [6]),

$$\alpha_1(t) = 1 - \left(\tan\frac{\pi}{4}t\right)^2, \qquad \alpha_2(t) = \frac{1 - (\tan(\pi t/4))^2}{(\cos(\pi t/8))^2}.$$

Let us also consider the approximation of functions by the subspace  $S_{2n}$  of periodic continuous polygonal lines with the 2n equidistant nodes

$$y_{\nu} = \frac{\pi}{2n} + \frac{\nu\pi}{n}, \qquad \nu \in \mathbb{Z},$$

on the period  $[-\pi, \pi]$ .

**Theorem 2.** For all  $k, n \in \mathbb{N}$ , n > 1, the following inequalities hold:

$$\left(1 - \frac{1}{2n}\right)\frac{k^2 + 1}{2} \le \sup_{\substack{f \in \mathcal{C}_{2\pi} \\ f \neq \text{const}}} \frac{e(f; \mathcal{S}_{2n})}{\omega_2(f, \pi/(2nk))} \le \frac{k^2 + 1}{2}.$$
(13)

**Corollary 2.** For all  $k \in \mathbb{N}$ , the following relations hold:

$$\sup_{\substack{n \ f \in \mathcal{C}_{2\pi} \\ f \neq \text{const}}} \sup_{\substack{f \in \mathcal{L}_{2\pi} \\ \sigma_2(f, \pi/(2nk))}} = \frac{k^2 + 1}{2}.$$

**Proof.** Since (see [11])

$$e(\mathcal{W}^2;\mathcal{S}_{2n}) = \frac{\pi^2}{8n^2},$$

we see that the upper bound in (13) follows from (3).

To find the lower bound, we consider the approximation of the function f constructed in the proof of Theorem 1 (see (7), (10)–(12)). We shall use the duality relation for approximation by splines of minimal deficiency [12]; in our particular case, this relation can be expressed as

$$e(f; \mathcal{S}_{2n}) = \sup\left\{\int_{-\pi}^{\pi} f(x) \, dg_1(x) : \operatorname{Var} g_1(x) \le 1, \, g_2(y_\nu) = \operatorname{const}, \, \nu \in \mathbb{Z}\right\},\tag{14}$$

where  $g_2(x)$  is the antiderivative of  $g_1(x)$ , which is zero in the mean, and  $\operatorname{Var} g_1(x)$  is the variation of  $g_1(x)$  on the period.

To find the lower bound for  $e(f; S_{2n})$ , we construct a piecewise constant function  $g_1(x)$  as follows: first, we define the auxiliary function  $\psi(x)$  on the period  $[-\pi, \pi]$  as an even continuous polygonal line with zeros at the points  $y_{\nu}$  and the vertices at the points  $x_{\nu}$ .

For  $x \in [0, \pi]$ , let

$$\psi(x) := c_{\nu}(x - y_{\nu}), \quad x \in [x_{\nu-1}, x_{\nu}], \qquad \nu = 1, \dots, n$$

The continuity condition at the point  $x_{\nu+1}$  means that

$$c_{\nu+1} = -c_{\nu} \frac{\pi/(2n) - (n - (\nu + 1))\beta}{\pi/(2n) + (n - (\nu + 1))\beta}.$$

Set  $c_1 = -1$ ; then, for  $\nu = 2, ..., n$ ,

$$c_{\nu} = (-1)^{\nu} \prod_{j=1}^{\nu-1} \frac{\pi/(2n) - (n-j)\beta}{\pi/(2n) + (n-j)\beta}.$$
(15)

The function  $\psi'(x)$  is piecewise constant and

Var 
$$\psi'(x) = 4 \sum_{\nu=1}^{n} |c_{\nu}|.$$

MATHEMATICAL NOTES Vol. 93 No. 6 2013

Set

922

$$g_2(x) = \frac{\psi(x) - \psi_0}{4\sum_{\nu=1}^n |c_\nu|}, \quad \text{where} \quad \psi_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \psi(x) \, dx.$$

Then  $g_2(x)$  is zero in the mean,  $g_2(y_{\nu}) = \text{const}, \nu \in \mathbb{Z}$ , and  $\text{Var } g_1(x) = 1$ . Since

$$|c_{\nu} - c_{\nu+1}| = |c_{\nu}| + |c_{\nu+1}|,$$

(see (15)), it follows from (14) that

$$e(f; \mathcal{S}_{2n}) \ge \int_{-\pi}^{\pi} f(x) \, dg_1(x) = \frac{1}{4\sum_{\nu=1}^n |c_{\nu}|} 2\left(\sum_{\nu=1}^{n-1} |c_{\nu} - c_{\nu+1}| + |c_n|\right) \frac{k^2 + 1}{2}$$
$$= \frac{1}{4\sum_{\nu=1}^n |c_{\nu}|} \left(4\sum_{\nu=1}^n |c_{\nu}| - 2|c_1|\right) \frac{k^2 + 1}{2} = \left(1 - \frac{1}{2\sum_{\nu=1}^n |c_{\nu}|}\right) \frac{k^2 + 1}{2}$$

Equality (15) implies that  $|c_{\nu}| \to 1$  as  $\beta \to 0$ . This yields the lower bound in (13). Theorem 2 is proved.

It is possible that the assertion of Theorem 2 remains valid in the case of approximation by splines of minimal deficiency and any order  $r \in \mathbb{N}$ . In this case, the upper bound in (13) holds and it suffices only to prove the lower bound.

## REFERENCES

- 1. N. P. Korneichuk, "The exact constant in Jackson's theorem on best uniform approximation of continuous periodic functions," Dokl. Akad. Nauk SSSR 145(3), 514–515(1962)[Soviet Math. Dokl. 3(3), 1040–1041 (1962)].
- 2. N. P. Korneichuk, "On the sharp constant in Jackson's inequality for continuous periodic functions," Mat. Zametki **32** (5), 669–674 (1982) [Math. Notes **32** (5), 818–821 (1983)].
- N. I. Chernykh, "On Jackson's inequality in L<sub>2</sub>," in *Trudy Mat. Inst. Steklov*, Vol. 88: Approximation of Functions in the Mean, Collection of papers (Nauka, Moscow, 1967), pp. 71–74 [Proc. Steklov Inst. Math. 88, 75–78 (1967)].
- N. I. Chernykh, "Best approximation of periodic functions by trigonometric polynomials in L<sub>2</sub>," Mat. Zametki 2 (5), 513–522 (1967) [Math. Notes 2 (5), 803–808 (1968)].
- 5. N. I. Chernykh, "Jackson's inequality in  $L_p(0, 2\pi)$ ,  $(1 \le p < 2)$ , with sharp constant," in *Trudy Mat. Inst.* Steklov, Vol. 198: Proceedings of an All-Union School on the Theory of Functions, Miass, July 1989 (Nauka, Moscow, 1992), pp. 232–241 [Proc. Steklov Inst. Math. **198**, 223–231 (1994)].
- 6. V. V. Shalaev "On the approximation of continuous periodic functions by trigonometric polynomials," in *Studies of Problems of Current Interest Dealing with Summation and Approximations of Functions and Their Applications* (Dnepropetrovsk. Univ., Dnepropetrovsk, 1979), pp. 39–43 [in Russian].
- 7. N. P. Korneichuk, Exact Constants in Approximation Theory (Nauka, Moscow, 1987) [in Russian].
- 8. A. A. Ligun, "Sharp constants in inequalities of Jackson type," in *Special Questions of Approximation Theory and Optimal Control of Distributed Systems* (Vishcha Shkola, Kiev, 1990), pp. 3–74 [in Russian].
- 9. V. V. Zhuk, "Some sharp inequalities between best approximations and moduli of continuity," Vestnik Leningrad. Univ. Mat. Mekh. Astronom., No. 1, 21–26 (1974).
- 10. V. V. Zhuk, Approximation of Periodic Functions (Izd. Leningradsk. Univ., Leningrad, 1982) [in Russian].
- 11. A. G. Babenko and Yu. V. Kryakin, "Integral approximation of the characteristic function of the interval and Jackson's inequality in  $C(\mathbb{T})$ ," Trudy Inst. Mat. Mekh. (Ural Branch, Russian Academy of Sciences) (2009), Vol. 15, pp. 59–65 [in Russian].
- 12. N. P. Korneichuk, Splines in Approximation Theory (Nauka, Moscow, 1984) [in Russian].